Noise Performance Design of CMOS Preamplifier for the Active Semiconductor Neural Probe

신경신호기록용 능동형 반도체미세전극을 위한 CMOS 전치증폭기의 잡음특성 설계방법

  • 김경환 (서울대학교 공과대학 전기공학부) ;
  • 김성준 (서울대학교 공과대학 전기공학부)
  • Published : 2000.10.01

Abstract

본 논문에서는 신경신호기록을 위한 반도체 미세전극용 전치증폭기의 잡음특성을 설계하기 위한 체계적인 방법을 제시한다. 세포외기록(extracellular recording)에 의하여 측정된 신경신호와 전형적인 CMOS소자의 저주파 잡음특성을 함계 고려하여 전체 신호대잡음비를 계산하였다. 2단 CMOS 차동증폭기에 대한 해석과 함께 신호대잡음비에 중요한 영향을 끼치는 요소들에 대하여 설명하였다. 출력잡음전력에 대한 해석적인식을 유도하였으며 이로부터 회로설계자가 조절할 수 있는 주파수응답과 소자 파라미터들을 결정하였다. 입력소자의 크기와 트랜스컨덕턴스의 비가 최적영역으로부터 약간 벗어날 경우에 신호대잡음비가 크게 저하됨을 보였다. 이와 함께 만족스런 잡음특성을 위한 증폭이의 설계 변수 값들도 제시하였다.

Keywords

References

  1. Proceedings of the IEEE v.66 The electrical properties of metal microelectrodes D.A. Robinson
  2. Transducers Biomedical Measurements R.S.C. Cobbold
  3. IEEE J. Solid-State Circuits v.21 An implantable multielectrode array with on-chip signal processing K. Najafi;K.D. Wise
  4. IEEE Trans. Biomedical Eng. v.33 Solid state electrodes for multichannel multiplexed intracortical neuronal recording S.L. BeMent;K.D. Wise;D.J. Anderson;K. Najafi;K.L. Drake
  5. IEEE J. Solid-State Circuits v.27 An implantble CMOS circuit interface for multiplexed microelectrode recording arrays J. Ji;K.D. Wise
  6. IEEE Trans. Biomedical Eng. v.39 Regeneration microelectrode array for peripheral nerve recording and stimulation G.T.A. Kovacs;C.W. Storment;J.M. Rosen
  7. IEEE J. Solid-State Circuits v.31 A 64-site multishank CMOS low-profile neural stimulation probe C. Kim;K.D. Wise
  8. IEEE J. Solid-State Circuits v.20 A monolithic signal processor for a neurophysiological telemetry system M.G. Dorman;M.A. Prisbe;J.D. Meindl
  9. Analog Integrated Circuit Design D.A. Johns;K. Martin
  10. HSPICE user's manual
  11. Low-noise electronic system design C.D. Motchenbacher;J.A. Connely
  12. Noise in Solid State Devices and Circuits A. van der Ziel
  13. Operation and Modeling of the MOS Transistor Y.P. Tsividis
  14. IEEE Trans. Electron Devices Flicker noise in CMOS transistors from subthreshold to strong inversion at various temperatures J. Chang;A.A. Abidi;C.R. Viswanathan
  15. IEEE Trans. Biomedical Eng. v.40 Modeling the neuron-microtransducer Junction: From extracellular to patch recording M. Grattarola;S. Martinoia
  16. IEEE J. Solid-State Circuits v.17 MOS operational amplifier design-A tutorial overview P.R. Gray;R.G. Meyer
  17. IEEE J. Solid-State Circuits v.14 Low-frequency noise considerations for MOS amplifer design J.C. Bertails
  18. Analysis and Design of Analog Integrated Circuit P.R. Gray;R.G. Meyer
  19. Fall Annual Meeting of the Korea Society of Medical and Biological Engineering Neural recordings from peripheral nerves using semiconductor microelectrode E.J. Hwang;S.J. Kim;H.W. Cho;W.T. Oh
  20. Statistical Digital Signal Processing M.H. Hayes
  21. IEEE Trans. Biomedical Eng. v.32 A low-capacitance multielectrode probe for use in extracellular neurophysiology K.D. Wise;J.B. Angell
  22. J. Physiol. A quantitative description of membrane current and its applications to conduction and excitation in nerve L. Hodgkin;A.F. Huxley
  23. Methods in Neuronal Modeling C. Koch;I. Segev(Eds.)
  24. Proceedings of IEEE v.84 Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization C.C. Enz;G.C. Temes
  25. IEEE Trans. Biomedical Eng. v.44 Detection, classification and superposition resolution of action potentials in multiunit single-channel recordings by an on-line real-time neural network R. Chandra;L.M. Optican
  26. IEEE Trans. Biomedical Eng. v.35 A long-term in vitro silicon-based microelectrode-neuron connection W.G. Regehr;J. Pine;D.B. Rutledge
  27. accepted for publication in IEEE Trans. Biomedical Eng. A Micro-machined Silicon Depth Probe for Multi Channel Neural Recording T.H. Yoon;E.J. Hwang;D.Y. Shin;S.I. Park;S.J. Oh;S.C. Jung;H.C. Shin;S.J. Kim