COMPLETE CONVERGENCE FOR ARRAYS OF ROWWISE INDEPENDENT RANDOM VARIABLES(II)

  • Sung, Soo-Hak (Department of Applied mathematics, Pai Chai University)
  • Published : 2000.05.01

Abstract

Let ${X_{nk}}, u_n\; \leq \;k \leq \;u_n,\; n\; \geq\; 1}$ be an array of rowwise independent, but not necessarily identically distributed, random variables with $EX_{nk}$=0 for all k and n. In this paper, we povide a domination condition under which ${\sum^{u_n}}_=u_n\; S_{nk}/n^{1/p},\; 1\; \leq\; p\;<2$ converges completely to zero.

Keywords

References

  1. Ann. Statist. v.36 Inequalities for the rth absolute moment of a sum of random variables, 1≤r≤2 B. von Bahr;C.G. Esseen
  2. Period. Math. Hung. v.25 Complete convergence for arrays A. Gut
  3. Proc. Nat. Acad. Sci. USA v.33 Complete convergence and the law of large numbers P.L. Hsu;H. Robbins
  4. Acta Math. Hung. v.54 Strong laws of large numbers for arrays of rowwise independent random variables T.C. Hu;F. Moricz;R.L. Taylor
  5. Sankhya Complete convergence for arrays of rowwise independent random variables T.C. Hu;S.H. Sung;A.I. Volodin
  6. Statist. Probab. Lett. v.14 Complete convergence of moving average processes D. Li;M.B. Rao;X.C. Wang
  7. Israel J. Math. v.8 On the subspace of Lp(p>2) spanned by sequences of independent random variables H.P. Rosenthal
  8. Bull. Iranian Math. Soc. v.20 Moving average and complete convergence H. Sadeghi;A. Bozorgnia