COMPLETE CONVERGENCE FOR ARRAYS OF ROWWISE INDEPENDENT RANDOM VARIABLES (II)

SOO HAK SUNG

ABSTRACT. Let $\{X_{nk}, u_n \leq k \leq v_n, n \geq 1\}$ be an array of rowwise independent, but not necessarily identically distributed, random variables with $EX_{nk} = 0$ for all k and n. In this paper, we povide a domination condition under which $\sum_{k=u_n}^{v_n} X_{nk}/n^{1/p}$, $1 \leq p < 2$, converges completely to zero.

1. Introduction

Hsu and Robbins (1947) introduced the concept of complete convergence. A sequence $\{X_n, n \geq 1\}$ of random variables is said to converge completely to the constant C if

$$\sum_{n=1}^{\infty} P(|X_n - C| > \epsilon) < \infty, \ \forall \epsilon > 0.$$

They also proved that if $\{X_n\}$ is a sequence of independent and identically distributed random variables with $EX_1 = 0$ and $EX_1^2 < \infty$, then S_n/n converges completely to zero, where $S_n = X_1 + \cdots + X_n$.

Now let $\{X_{nk}, 1 \leq k \leq n, n \geq 1\}$ be an array of rowwise independent random variables such that $EX_{nk} = 0$ for all k and n. When the array $\{X_{nk}\}$ is independent and identically distributed random variables, it is easily shown that if $E|X_{11}|^{2p} < \infty$ for some $1 \leq p < 2$, then $\sum_{k=1}^{n} X_{nk}/n^{1/p}$ converges completely to zero. This result has been generalized and extended in several directions. Throughout this paper, we

Received June 2, 1999.

²⁰⁰⁰ Mathematics Subject Classification: 60F15.

Key words and phrases: complete convergence, arrays, rowwise independent random variables, moving average.

The author wishes to acknowledge the financial support of the Korea Research Foundation made in the program year of 1998 (1998-001-D00144).

only consider the extension to arrays of rowwise independent, but not necessarily identically distributed, random variables.

An array $\{X_{nk}\}$ is said to be uniformly bounded by a random variable X if

(1)
$$P(|X_{nk}| > t) \le P(|X| > t)$$
 for all $t \ge 0$ and for all k and n .

Hu, Móricz, and Taylor (1989) proved that if $\{X_{nk}\}$ is an array of rowwise independent random variables satisfying $EX_{nk} = 0$ and (1) with X such that $E|X|^{2p} < \infty$ for some $1 \le p < 2$, then $S_n/n^{1/p}$ converges completely to zero, where $S_n = \sum_{k=1}^n X_{nk}$.

Gut (1992) introduced the concept of weakly mean domination. An array $\{X_{nk}\}$ is said to be weakly mean dominated by a random variable X if for some C > 0

(2)
$$\frac{1}{n} \sum_{k=1}^{n} P(|X_{nk}| > t) \le CP(|X| > t)$$
 for all $t \ge 0$ and all n .

Note that the condition (1) implies the condition (2). He also proved Hu, Móricz, and Taylor's (1989) theorem under the weaker condition (2).

For the more general array $\{X_{nk}, u_n \leq k \leq v_n, n \geq 1\}$, we introduce the following domination condition. For p > 0,

(3)
$$\frac{1}{n} \sum_{k=u_n}^{v_n} E|X_{nk}|^p I(|X_{nk}|^p > t) \le CE|X|^p I(|X|^p > t)$$
 for all $t \ge 0$ and all n .

When $u_n = 1$, $v_n = n$ for $n \ge 1$, the condition (3) is weaker than the condition (2) (see the proof of Corollary 1).

In this paper, we extend Gut's (1992) theorem to the array $\{X_{nk}, u_n \leq k \leq v_n\}$ satisfying (3). From this result, we obtain a complete convergence result for moving average processes.

Throughout this paper, C denotes a positive constant which may be different in various places.

2. Main result

To prove the main result, we will need the following lemmas.

LEMMA 1. For r > 0

$$\sum_{n=1}^{\infty} E|X|^r I(|X|^r > n) \le E|X|^{2r}.$$

Proof.

$$\sum_{n=1}^{\infty} E|X|^r I(|X|^r > n) = \sum_{n=1}^{\infty} \sum_{k=n}^{\infty} E|X|^r I(k < |X|^r \le k + 1)$$
$$= \sum_{k=1}^{\infty} E|X|^r I(k < |X|^r \le k + 1)k$$
$$\le E|X|^{2r}.$$

The following lemma is well known. In the first inequality, one has C < 2 (see von Bahr and Esseen (1965)). For the second inequality, see Rosenthal (1970).

LEMMA 2. Let X_1, \dots, X_n be independent random variables with $\begin{array}{l} EX_k = 0 \text{ for } 1 \leq k \leq n. \text{ Then the following statements hold.} \\ \text{(i)} \ E|\sum_{k=1}^n X_k|^r \leq C\sum_{k=1}^n E|X_k|^r \text{ if } 1 \leq r \leq 2. \\ \text{(ii)} \ E|\sum_{k=1}^n X_k|^r \leq C\{\sum_{k=1}^n E|X_k|^r + (\sum_{k=1}^n E|X_k|^2)^{r/2}\} \text{ if } r > 2. \end{array}$

(ii)
$$E|\sum_{k=1}^{n} X_k|^r \le C\{\sum_{k=1}^{n} E|X_k|^r + (\sum_{k=1}^{n} E|X_k|^2)^{r/2}\}$$
 if $r > 2$

LEMMA 3. Let $0 and suppose that <math>\{X_{nk}, u_n \leq k \leq v_n\}$ is an array of rowwise independent random variables satisfying (3). Then

$$\sum_{k=u_n}^{v_n} E|X_{nk}|^{\alpha} I(|X_{nk}|^p \le n)$$

$$\le C \left\{ nE|X|^p + n \sum_{i=1}^n i^{\frac{\alpha}{p}-2} E|X|^p I(|X|^p > i) \right\}.$$

Soo Hak Sung

Proof. By using the mean value theorem, we obtain

$$(4) \qquad (i+1)^{\frac{\alpha}{p}-1}-i^{\frac{\alpha}{p}-1}\leq \left\{\begin{array}{ll} (\frac{\alpha}{p}-1)(i+1)^{\frac{\alpha}{p}-2} & \text{if } \frac{\alpha}{p}>2\\ (\frac{\alpha}{p}-1)i^{\frac{\alpha}{p}-2} & \text{if } 1<\frac{\alpha}{p}\leq 2. \end{array}\right.$$

Since 0 , it follows by (3) and (4) that

$$\begin{split} &\sum_{k=u_{n}}^{v_{n}} E|X_{nk}|^{\alpha}I(|X_{nk}|^{p} \leq n) \\ &= \sum_{k=u_{n}}^{v_{n}} \sum_{i=1}^{n} E|X_{nk}|^{\alpha}I(i-1 < |X_{nk}|^{p} \leq i) \\ &\leq \sum_{k=u_{n}}^{v_{n}} \sum_{i=1}^{n} i^{\frac{\alpha}{p}-1}E|X_{nk}|^{p}I(i-1 < |X_{nk}|^{p} \leq i) \\ &= \sum_{k=u_{n}}^{v_{n}} \sum_{i=1}^{n} i^{\frac{\alpha}{p}-1} \left[E|X_{nk}|^{p}I(|X_{nk}|^{p} > i-1) - E|X_{nk}|^{p}I(|X_{nk}|^{p} > i) \right] \\ &= \sum_{k=u_{n}}^{v_{n}} \left[E|X_{nk}|^{p}I(|X_{nk}|^{p} > 0) - n^{\frac{\alpha}{p}-1}E|X_{nk}|^{p}I(|X_{nk}|^{p} > n) \right. \\ &+ \sum_{i=1}^{n-1} ((i+1)^{\frac{\alpha}{p}-1} - i^{\frac{\alpha}{p}-1})E|X_{nk}|^{p}I(|X_{nk}|^{p} > i) \right] \\ &\leq \sum_{k=u_{n}}^{v_{n}} E|X_{nk}|^{p}I(|X_{nk}|^{p} > 0) \\ &+ \sum_{i=1}^{n-1} ((i+1)^{\frac{\alpha}{p}-1} - i^{\frac{\alpha}{p}-1}) \sum_{k=u_{n}}^{v_{n}} E|X_{nk}|^{p}I(|X_{nk}|^{p} > i) \\ &\leq C \left\{ nE|X|^{p}I(|X|^{p} > 0) + n \sum_{i=1}^{n-1} ((i+1)^{\frac{\alpha}{p}-1} - i^{\frac{\alpha}{p}-1})E|X|^{p}I(|X|^{p} > i) \right\} \\ &\leq C \left\{ nE|X|^{p} + n \sum_{i=1}^{n} i^{\frac{\alpha}{p}-2}E|X|^{p}I(|X|^{p} > i) \right\}. \end{split}$$

Complete convergence

Now we state and prove our main result.

THEOREM 1. Let $1 \leq p < 2$ and suppose that $\{X_{nk}, u_n \leq k \leq v_n, n \geq 1\}$ is an array of rowwise independent random variables satisfying $EX_{nk} = 0$ and (3) with X such that $E|X|^{2p} < \infty$. Then $\sum_{k=u_n}^{v_n} X_{nk}/n^{1/p}$ converges completely to zero.

Proof. Let $X'_{nk} = X_{nk}I(|X_{nk}|^p \le n)$ and $X''_{nk} = X_{nk}I(|X_{nk}|^p > n)$. Since $EX_{nk} = 0$, it follows that

$$\frac{\sum_{k=u_n}^{v_n} X_{nk}}{n^{1/p}} = \frac{\sum_{k=u_n}^{v_n} (X'_{nk} - EX'_{nk})}{n^{1/p}} + \frac{\sum_{k=u_n}^{v_n} (X''_{nk} - EX''_{nk})}{n^{1/p}}.$$

Hence, it is enough to show that

(5)
$$\frac{\sum_{k=u_n}^{v_n} (X'_{nk} - EX'_{nk})}{n^{1/p}} \to 0 \text{ completely}$$

and

(6)
$$\frac{\sum_{k=u_n}^{v_n} (X_{nk}'' - EX_{nk}'')}{n^{1/p}} \to 0 \text{ completely.}$$

By Lemma 2, c_r -inequality, and the condition (3), we have

$$E \left| \frac{\sum_{k=u_n}^{v_n} (X_{nk}'' - EX_{nk}'')}{n^{1/p}} \right|^p \le C \frac{1}{n} \sum_{k=u_n}^{v_n} E|X_{nk}'' - EX_{nk}''|^p$$

$$\le C \frac{1}{n} \sum_{k=u_n}^{v_n} E|X_{nk}''|^p$$

$$\le C E|X|^p I(|X|^p > n).$$

It follows by Lemma 1 that

$$\sum_{n=1}^{\infty} E \left| \frac{\sum_{k=u_n}^{v_n} (X_{nk}'' - EX_{nk}'')}{n^{1/p}} \right|^p \le C \sum_{n=1}^{\infty} E|X|^p I(|X|^p > n)$$

$$\le C E|X|^{2p} < \infty,$$

which implies that (6) holds.

Now we show that (5) holds. Let $\alpha > \frac{2p}{2-p}$. Then $\alpha > 2p$ since $1 \le p < 2$. From Lemma 2 and c_r -inequality, we have

(7)
$$E \left| \frac{\sum_{k=u_n}^{v_n} (X'_{nk} - EX'_{nk})}{n^{1/p}} \right|^{\alpha} \\ \leq C \frac{1}{n^{\alpha/p}} \left\{ \sum_{k=u_n}^{v_n} E|X'_{nk}|^{\alpha} + \left(\sum_{k=u_n}^{v_n} E|X'_{nk}|^2 \right)^{\alpha/2} \right\}.$$

By using Lemma 1 and Lemma 3, we have

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha/p}} \sum_{k=u_n}^{v_n} E|X'_{nk}|^{\alpha}$$

$$\leq C \left\{ E|X|^p \sum_{n=1}^{\infty} \frac{n}{n^{\alpha/p}} + \sum_{n=1}^{\infty} \frac{n}{n^{\alpha/p}} \sum_{i=1}^{n} i^{\frac{\alpha}{p}-2} E|X|^p I(|X|^p > i) \right\}$$

$$= C \left\{ E|X|^p \sum_{n=1}^{\infty} \frac{n}{n^{\alpha/p}} + \sum_{i=1}^{\infty} E|X|^p I(|X|^p > i) i^{\frac{\alpha}{p}-2} \sum_{n=i}^{\infty} \frac{n}{n^{\alpha/p}} \right\}$$

$$\leq C \{ E|X|^p + \sum_{i=1}^{\infty} E|X|^p I(|X|^p > i) \}$$

$$\leq C \{ E|X|^p + E|X|^{2p} \} < \infty.$$

Also, we have by Lemma 1 and Lemma 3 that

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha/p}} \left(\sum_{k=u_n}^{v_n} E|X'_{nk}|^2 \right)^{\alpha/2}$$

$$(9) \qquad \leq C \sum_{n=1}^{\infty} \frac{1}{n^{\alpha/p}} \left(nE|X|^p + n \sum_{i=1}^n i^{\frac{2}{p}-2} E|X|^p I(|X|^p > i) \right)^{\alpha/2}$$

$$\leq C \sum_{n=1}^{\infty} \frac{1}{n^{\alpha/p}} \left(nE|X|^p + n \sum_{i=1}^n E|X|^p I(|X|^p > i) \right)^{\alpha/2}$$

Complete convergence

$$\leq C \sum_{n=1}^{\infty} \frac{1}{n^{\alpha/p}} (nE|X|^p + nE|X|^{2p})^{\alpha/2}$$

$$= C(E|X|^p + E|X|^{2p})^{\alpha/2} \sum_{n=1}^{\infty} \frac{1}{n^{\alpha(\frac{1}{p} - \frac{1}{2})}} < \infty,$$

since
$$\alpha(\frac{1}{p} - \frac{1}{2}) > 1$$
. Thus, (5) holds by (7), (8), and (9).

The following corollary was proved by Gut (1992).

COROLLARY 1. Let $1 \leq p < 2$ and suppose that $\{X_{nk}, 1 \leq k \leq n, n \geq 1\}$ is an array of rowwise independent random variables satisfying $EX_{nk} = 0$ and (2) with X such that $E|X|^{2p} < \infty$. Then $\sum_{k=1}^{n} X_{nk}/n^{1/p}$ converges completely to zero.

Proof. By Theorem 1, it is enough to show that the condition (2) implies the condition (3) when $u_n = 1, v_n = n$. Observe that

$$E|X|^p I(|X|^p > t) = tP(|X|^p > t) + \int_t^\infty P(|X|^p > x) \ dx.$$

Hence we have

$$\frac{1}{n} \sum_{k=1}^{n} E|X_{nk}|^{p} I(|X_{nk}|^{p} > t)$$

$$= \frac{1}{n} \sum_{k=1}^{n} \left[tP(|X_{nk}|^{p} > t) + \int_{t}^{\infty} P(|X_{nk}|^{p} > x) dx \right]$$

$$= t \frac{1}{n} \sum_{k=1}^{n} P(|X_{nk}|^{p} > t) + \int_{t}^{\infty} \frac{1}{n} \sum_{k=1}^{n} P(|X_{nk}|^{p} > x) dx$$

$$\leq C \left[tP(|X|^{p} > t) + \int_{t}^{\infty} P(|X|^{p} > x) dx \right]$$

$$= CE|X|^{p} I(|X|^{p} > t).$$

COROLLARY 2. Let $1 \le p < 2$ and suppose that $\{Y_k, -\infty < k < \infty\}$ is a doubly infinite sequence of independent random variables satisfying $EY_k = 0$ and (10) with Y such that $E|Y|^{2p} < \infty$.

(10) $E|Y_k|^p I(|Y_k|^p > t) \le CE|Y|^p I(|Y|^p > t)$ for all $t \ge 0$ and all k.

Let $\{a_k, -\infty < k < \infty\}$ be an absolutely summable sequence of real numbers and

$$X_i = \sum_{k=-\infty}^{\infty} a_{i+k} Y_k, \ i \ge 1.$$

Then $\sum_{i=1}^{n} X_i/n^{1/p}$ converges completely to zero.

Proof. Obseve that

$$\sum_{i=1}^{n} X_{i} = \sum_{k=-\infty}^{\infty} \sum_{i=1}^{n} a_{i+k} Y_{k}.$$

Set $a_{nk} = \sum_{i=1}^{n} a_{i+k}$ and $X_{nk} = a_{nk}Y_k$. Then $\{X_{nk}, -\infty < k < \infty, n \geq 1\}$ is an array of rowwise independent random variables with $EX_{nk} = 0$. Since $\{a_k, -\infty < k < \infty\}$ is absolutely summable, say $\sum_{k=-\infty}^{\infty} |a_k| = C$, we have that $|a_{nk}| \leq C$ and $\sum_{k=-\infty}^{\infty} |a_{nk}| \leq \sum_{i=1}^{n} \sum_{k=-\infty}^{\infty} |a_{i+k}| \leq Cn$. Then it follows by (10) that

$$\frac{1}{n} \sum_{k=-\infty}^{\infty} E|X_{nk}|^p I(|X_{nk}|^p > t)$$

$$\leq \frac{1}{n} \sum_{k=-\infty}^{\infty} |a_{nk}|^p E|Y_k|^p I(|Y_k|^p > \frac{t}{C^p})$$

$$\leq CE|Y|^p I(|Y|^p > \frac{t}{C^p}) \frac{1}{n} \sum_{k=-\infty}^{\infty} |a_{nk}|^p$$

$$\leq CE|Y|^p I(|Y|^p > \frac{t}{C^p}) \max_{k} |a_{nk}|^{p-1} \frac{1}{n} \sum_{k=-\infty}^{\infty} |a_{nk}|$$

$$\leq CE|Y|^p I(|Y|^p > \frac{t}{C^p}).$$

Complete convergence

Thus $\{X_{nk}, -\infty < k < \infty, n \geq 1\}$ satisfies the condition (3) when $u_n = -\infty, v_n = \infty$, and X = CY, and so the corollary 2 follows from Theorem 1.

REMARK 1. Li, Rao, Wang (1992) proved Corollary 2 under the stronger condition that $\{Y_k, -\infty < k < \infty\}$ is a sequence of independent and identically distributed random variables with $E|Y_1|^{2p} < \infty$. Sadeghi and Bozorgnia (1994) proved Corollary 2 under the stronger condition that $\{Y_k, -\infty < k < \infty\}$ is a sequence of independent random variables which is uniformly bounded by a random variable Y such that $E|Y|^{2p} < \infty$.

References

- [1] B. von Bahr and C. G. Esseen, Inequalities for the rth absolute moment of a sum of random variables, $1 \le r \le 2$, Ann. Math. Statist. 36 (1965), 299-303.
- [2] A. Gut, Complete convergence for arrays, Period. Math. Hung. 25 (1992), 51-75.
- [3] P. L. Hsu and H. Robbins, Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci. USA 33 (1947), 25-31.
- [4] T. C. Hu, F. Móricz, and R. L. Taylor, Strong laws of large numbers for arrays of rowwise independent random variables, Acta Math. Hung. 54 (1989), 153-162.
- [5] T. C. Hu, S. H. Sung, and A. I. Volodin, Complete convergence for arrays of rowwise independent random variables, submitted to Sankhya (1999).
- [6] D. Li, M. B. Rao, and X. C. Wang, Complete convergence of moving average processes, Statist. Probab. Lett. 14 (1992), 111-114.
- [7] H. P. Rosenthal, On the subspace of $L^p(p>2)$ spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273-303.
- [8] H. Sadeghi and A. Bozorgnia, Moving average and complete convergence, Bull. Iranian Math. Soc. 20 (1994), 37-42.

DEPARTMENT OF APPLIED MATHEMATICS, PAI CHAI UNIVERSITY, TAEJON 302-735, KOREA

E-mail: sungsh@www.paichai.ac.kr