참고문헌
- J. Fac. Sic. Hokkaido Univ. v.13 Strongly π-regular rings G. Azumaya
- Comm. Algebra v.22 no.1 On semicommutative π-regular rings A. Badawi
- Trans. Amer. Math. Soc. v.95 Finitistic dimension and a generalizations of semiprimary rings H. Bass
- Proc. Biennial Ohio State-Denison Conference 1992 Completely prime ideals and associated radicals G.F. Birkenmeier;H.E. Heatherly;E.K. Lee;S.K. Jain(ed.);S.T. Rizvi(ed.)
- J. Pure and Appl. Algebra. v.155 Regularity conditions and the simplicity of prime factor rings G.F. Birkenmeier;J.Y. Kim;J.K. Park
- C. R. Acad. Sci. Paris. Ser. A. v.283 Sur les anneaux fortement π-reguliers F. Dischinger
- J. Algebra v.69 Rings generated by units J.W. Fisher;R. Snider
- Von Neumann Regular Rings K.R. Goodearl
- Math. J. Okayama Univ. v.20 Some studies on strongly π-regular rings Y. Hirano
- J. Appl. Algebra On weak π-regularity of rings whose prime ideals are maximal C.T. Hong;N.K. Kim;T.K. Kwak;Y. Lee
- Bull. Korean Math. Soc. v.36 no.3 A study on quasi-duo rings C.O. Kim;H.K. Kim;S.H. Jang
- Lectures on Rings and Modules J. Lambek
- Kyungpook Math. J. v.38 no.1 A note on π-regular rings Y. Lee;C. Huh
- Some results on quasi-duo rings
- Comm. Algebra. v.26 no.2 Questions on 2-primal rings Y. Lee;C. Huh;H.K. Kim
- Trans. Amer. Math. Soc. v.184 Prime ideals and sheaf representation of a pseudo symmetric ring G. Shin
- J. Pure and Applied Algebra v.76 Noncommutative rings in which every prime ideal is contained in a unique maximal ideal S.-H. Sun
- Pure Appl. Math. Sci. v.21 Weakly right duo rings X. Yao
- Glasgow Math. J. v.37 On quasi-duo rings H.-P. Yu