On Lag Increments Of A Gaussian Process

  • 발행 : 2000.04.01

초록

In this paper the limit theorems on lag increments of a Wiener process due to Chen, Kong and Lin [1] are developed to the case of a Gaussian process via estimating upper bounds of large deviation probabilities on suprema of the Gaussian process.

키워드

참고문헌

  1. Ann. Probab v.14 Answers to some questions about increments of a Wiener process G. J. Chen;F. C. Kong;Z. Y. Lin
  2. J. Math. Kyoto Univ v.31 no.1 Erdos-Renyi type laws applied to Gaussian processes Y. K. Choi
  3. Stoch. Proc. & their Appl v.39 On infinite series of independent Ornstein-Uhlenbeck processes E. Csaki;M. Csorgo;Z. Y. Lin;P. Revesz
  4. Probability in Banach spaces, Oberwalbach, Lecture Notes in Math. Springer v.526 Evaluations of processus Gaussians cpmposes X. Fernique
  5. Ann. Probab v.11 no.1 Some results on increments of the Wiener process with applications to lag sums of i.i.d. r.v.s D. L. Hanson;R. P. Russo
  6. Ann. Probab v.17 Some "liminf" results for increments of a Wiener process D. L. Hanson;R. P. Russo
  7. Chinese J. Appl. Probab. Statist v.5 Some results on increments of the Wiener process F. X. He;B. Chen
  8. Extremes and Related Properties of Random Sequences and Processes M. R. Leadbetter;G. Lindgren;H. Rootzen
  9. Applied Math., J. Chinese Universities v.8 no.1 A general form of the increments of a two-parameter Wiener process Z. Y. Lin;C. R. Lu
  10. Scientia Sinica v.31 A convergence rate problem associated with the Wiener processes K. H. Liu
  11. Chin. Ann. Math v.12 no.B How big are the lag increments of a two-parameter Wiener process? C. R. Lu
  12. Stoch. Proc. & their Appl v.18 On the size of the increments of nonstationary Gaussian processes J. Otega
  13. PH. D. Thesis Limit theorem for dependent and independent random variables Q. M. Shao
  14. Bell Syst. Tech. J v.41 The one sided barrier problem for Gaussian noise D. Slepian