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ON LAG INCREMENTS OF A GAUSSIAN PROCESS

YonNGg-KaB CHoO1 AND JIN-HEE CHOI

ABSTRACT. In this paper the limit theorems on lag increments of
a Wiener process due to Chen, Kong and Lin [1] are developed to
the case of a Gaussian process via estimating upper bounds of large
deviation probabilities on suprema of the Gaussian process.

1. Introduction

Limit theorems on the increments of Wiener processes and Gauss-
ian processes are deeply related to the properties of their sample paths.
So the convergence properties of increments of Wiener processes and
Gaussian processes attract the attention of many probabilists in a last
few decades. Our interest in this paper is to obtain some limit theorems
on lag increments of Gaussian processes. The limit results on lag in-
crements of Wiener processes were initially presented and discussed by
Hanson and Russo [5]. Since then, several results on Wiener processes
in various directions have been investigated by the following authors:
Chen, Kong and Lin (1], Liu {10], Shao [13], He and Chen [7], Hanson
and Russo [6], Lin and Lu [9] and Lu [11], etc.

Among the above many results, we are interested in Chen, Kong and
Lin [1] whose results are the following fundamental limit theorems on
the lag increments of a Wiener process.

THEOREM A. ([1]) Let {W(t),0 < t < oo} be a Wiener process.
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Then

limsup sup |W(T)-W(T -¢t)|/D(T,¢t)=1 as,
T—oo 0<tLT

lim sup sup |[W(T)-W(T —5s)|/D(T,t)=1 as,
T—000<t<T 0<s<t

lim sup sup |W(s)—W(s—1t)|/D(T,t)=1 a.s.,
T—000<t<Tt<s<T
where D(T,t) = {2t(log(T'/t) + log log t)}'/2.

The main aim of this paper is to extend Theorem A to the general
form of a Gaussian process.

Throughout this paper we shall always assume the following state-
ments: Let {X(t),0 < t < oo} be a centered Gaussian process on
the probability space (2,S,P) with X(0) = 0 and stationary incre-
ments E{X(t) — X(s)}? = o?(|t — s|), where o(y) is a function of
y > 0. For some Cp > 0, let o(t) = Cpt*,0 < a < 1. Denote
d(T,t) = {202(t)(log(T/t) + loglogt)}!/2, where logt = In(t v 1) and
mV n = max{m,n}. When a =1/2 and Cp =1, {X(¢),0 <t < oo} is
a Wiener process {W (t),0 <t < oo}.

The main results are as follows:

THEOREM 1.1. We have
(L.1) limsupp_, oo SUpgcscr 1X (T) = X(T —t)|/d(T,t) =1  as,
(1.2) Bm7 00 SUPg< s < SUPg <5<t | X (T) — X(T — 5)| /d(T,t) =1 as.,
(1.3) Hm7 00 SUPg< <7 SUPr<ocr | X (8) — X (s —8)|/d(T,t) =1 as,,

(1.4) imp ;00 SUPg< <7 SUP;< <1 SUPo< <t | X (8) — X (s — h)|/d(T, t)
=1 as.

REMARK. Theorem A is immediate by putting o(t) = v/t in Theo-
rem 1.1. It is interesting to compare (1.1) with the law of the iterated
logarithm:

(1.5) limsup | X(T)|/d(T,T) =1 as.

Here (1.5) follows by setting ap = T in the next Lemma 2.1.

Using Theorem 1.1 and (1.5), we can obtain the following:
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COROLLARY 1.1. Let ap(0 < T < o0) be a function of T such that
0 < ar <T. Then we have

limsup sup |X(T)— X (T —t)|/d(T,t)
T—oo ar<tLT

=limsup sup sup |[X(T)—-X(T - s)|/d(T,t)
T—oo ar<t<T0<s<t

=limsup sup sup |X(s)— X(s—1t)|/d(T,t)
T—oo ap<t<Tt<s<T

=limsup sup sup sup |X(s)— X(s—h)|/d(T,t)
T—oo ar<t<Tt<s<T 0<h<t
=1 as.

In Corollary 1.1, we can illustrate such kinds of functions as ar =
1, logT, T/loglogT, ¢T'(0 < ¢ < 1) and etc.

2. Proofs

We shall accomplish the proofs of Theorems 1.1 and Corollary 1.1
through the following several lemmas. Lemmas 2.2~2.6 are mainly re-
lated to the estimation for upper bounds of large deviation probabilities
on suprema of the Gaussian process.

LEMMA 2.1 (Ortega [12]). Let {X(¢),0 < t < oo} be a centered
Gaussian process with 02(h) = E{X(t + h) — X(t)}? = Coh®* for 0 <
a < 1 and some constant Co > 0. Let 0 < ap < T be a function of T
for which

(i) ar is non-decreasing,

(ii) T'/ar is non-decreasing.

Then

limsup | X(T) - X(T —ar)| - Br =1 as,

T—o00

limsup sup sup |[X(t+s)—X(@)|-Br=1 as,
T—oo 0<t<T—ar 0<s<ar

where B = {202(ar)(log(T/ar) +loglog T)}~1/2 .
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LEMMA 2.2 (Csdki et al. [3], Choi [2]). Let {X(t),—o00 < t < oo}
be an almost surely continuous Gaussian process with E{X (t)} = 0 and
E{X(s)—X(s—1)}? = 0?(t), o(t) = t*o1(t) for some a > 0, where o1 (t)
is a nondecreasing function. Then, for any € > 0, there exist positive
constants C = C, and a. > 0 such that

2

CcT —v
P su sup |X(s) —X(s—h)| >veo(a); < —ex
{Ogs—hl,)ngOShga‘ (s) ( ) ( )} T a p(2+£)

for every positive v and a > a..

LEMMA 2.3 (Slepian [14]). Suppose that {V;,i = 1,2,---,n} and
{W;, i = 1,2,--- ,n} are jointly standardized normal random variables
with

Cov(Vi, V) < Cov (Wi, W), i # j.

Then, for any real u,

P{ max Vi < u} < P{ max Wi < u}.

LEMMA 2.4. Let {X(t),0 <t < oo} be a centered Gaussian process
such that X(0) = 0 and E{X (t) — X(s)}? = o%(|t — s|) = C&|t — s|** for
0 < a < % and some Cg > 0. Then, for any u, > 0,

sup

P{1<s<n ()i)(s —1) < un} < exp (—————W: = 1)6_“"2/2).

PROOF. From the Fernique inequality ([4], p.71), we have

1

(Vs 1)‘3_“"2/2) <0 < §(Zmmyge ™) w20

V2 (uy, + 1)

where@t)—ft Woris ~v*/2dy. Fori=1,2,--- ,n, define Z(i) = X (i)—
X(E-1). It follows from the relation ab = (a + b — (a — b)?)/2 that,
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for I := 1 — j > 1, without loss of generality,
Cov(Z(2), Z(4))
= B{(X(®) - X({i-1))(X{) -X(G-1)}
= LB{X() - X()Y + 5 E{XG) - X( - VP
+ %E{X(i 1) - X))+ %E{X(i -1)-X(j-1)}

= %{(02(1 +1) — o?(1)) = (62(1) — o*(1 - 1))} < 0.

In order to apply Lemma 2.3, let V; = Z(i)/o(1), and let W; be inde-
pendent standard normal random variables. Since

Cov(V;, V;) < Cov (W, W;) =0, i# 7],

it follows from Lemma 2.3 and the Fernique inequality that

Pl BT s u) s Pl v )

< P{mex Wi = [[ POV < un}
= (1 — ®(u,))" < exp(—n®(u,)) < exp (7__2?(;—7:1-56—%2/2).
l:l

LEMMA 2.5 (Leadbetter et al. [8]). Let {¢;,7 =1,2,---,n} be jointly
standardized normal random variables with A;; = Corr(&;,&;) such that

4 == max|A;;| < 1.
'L;ﬁ] | 7«J|
Then, for any real u,, and integers 1 <1l; <lp <--- <, <n

P{ max &, < un} < (1—<I>(un))k"

1<i<ky
FECY rsle(13)
ij| expl———7 )
1<i<j<kn 1+ ril

(2.1)
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where r;; = Ay, K = K is a constant independent of n, u, and ki,.

In order to estimate an upper bound for the second term of the right
hand side of (2.1), we establish the following lemma, which is easily
proved by emulating the proof of Lemma 4.4 in Choi [2].

LEMMA 2.6. Let &;(j = 1,2, ,n), 6, k, and r;; be as in Lemma
2.5. Assume that |r;;| < pj;_j;; < 1 (i # j) and, for some v > 0

v

Pm<m?¥, m=12. .- ,k,—1.
Let un, = {(2 — 2¢)n}'/? and k,, = [e"/M] for some M > 0, where [/]

denotes the integer part. Then there exist constants dg = o(e,d,v) > 0
and C > 0 such that

2
Z = Z |rij|exp(—%r—iﬂ> < Ce™%m,

1<i<j<kn

Hereafter ¢ and C denote positive constants which can be changed
in different lines if necessary. We are now ready to prove Theorem 1.1.
The main stream of the proof is similar to the proof of Theorem A.

PROOF OF THEOREM 1.1. Step I. From Lemma 2.1, we have

limsup sup |X(T)—X(T —t)|/d(T\,t)
T—oo 0<t<T

(2:2) > li;nsup I X(T)|/d(T, T)=1 aus.

Step 2. (1.1) follows from (2.2) if we show that

(2.3) limsup sup sup sup |X(s)— X(s—h)|/d(T,t) <1 a.s.
T—00 0<t<T t<s<T0<h<t

Take § > 1 so that 1 < 2(1+¢)?/((2 +€)8%®) =: 1 + 2¢’ for any small
e>0. Forn=12,---,let k=---,-2,-1,0,1,2,--- , k,, where k, =
[(n+1)/logf). Set T;, = e",tx = 6%, kg = [1/log6] and k!, = [(n+1-
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log nl/sl)/log 8]. When T, < T < Ty1, we have

sup sup sup |X(s)—X(s— h)|/d(T,t)

0<t<T t<s<T 0<h<t
X(s)—X(s—h
< sup sup sup  sup | X(s) (s — h)l
(2 4) —oo<k<kn,—1 tk<t<tk+1 t<s<Tn+1 0<h<t d(Tn, tk)
< sw sup sup | X (s) — X(s—h)|
T o oo<k<kn—10<s—h,s<Tn41 0<h<tiir d(Tp, tx)
== sup Ank.
—co<k<kn—1
From Lemma 2.2, we have
(2.5)
P{Ank >1+ s}
X(s)—-X(s—h t
P ap KOZXEBL o)
0<s—h,5<Tn+1 o(tr+1) o (tk+1)

0<h<tr4a

x {2(log(Ty /tx) + log logtk)}1/2}
< CTnin exp(__ (1+e)? ( o(tk)

)2{2(log(Tn/tk) + loglogtk)})

th+1 2+¢ \o(trs1)
T 1 ¢ Tnlogt 2t g2 T, N\ —2¢ ,
<C +1( n 08 k) o < C’(-—) (logtx)~ 172 .
te+1 tk ik

Hence, for —o0 < k < kg,

o0

Z Z P{Ank21+5} i C(%ﬁ)—%’

n=1 —00<k£ko <k<k9

0 oo ke
(2.6) =0>. 2 ( ) Zkz( )
<083 (%) ok
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For the case kg < k < k, — 1, we have, as in (2.5),

—2¢’ ’
@7  Plamz1+e}< C(Zz:) * (log ).

Note that, when kg < k < k,’,

’ ’ ’ T, 2¢!
2’ kn'+1y2¢" n+l
(Bee2)™ < (07 < {(long)l/E'}

From (2.7), it follows that
(2.8)

00 fes) ky' 2’

k'
Z z P{Ank21+E}SCZ Z (—l(;g‘m(logtk

n=1 k=kg+1 n=1k=ko+1
0o ky'

<C Z n=? Z k=128 < oo,
n=1 k=ko+1

For the case k,’ < k < k, — 1, we have, for n large en01_1gh,

T, /% < tyyr < 0Tny1,
kn — kn' < (¢'log8)1logn + 2 =: k,".
Using (2.7) again, one see that

e’} kn—1

Z Z P{Anr > 1+¢}

n=1k=k,'+1
o©  kn—1 T —9¢! ,
< CZ Z (tn+1> (log tpe1) 12"
(29) n=1k=k,'+1 k+1

< CY (kn — K, — 1)6% (log T, /%)~ 042"
n=1

o0 oo
<O k04 <03 R0+ < oo

n=1 n=1
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Finally, merging (2.6), (2.8) and (2.9) together, we get

o0

ZP{ sup Ank21+€}fi Z P{Ankzl'f'e}

n=1 —oo<k<kn—1 n=1—oco<k<kn—1
oo oo kn'

=3 > PlAw=z1l4el+)y Y PlAn21+e}
n=1—oco<k<ks n=1k=kg+1

[o) kn—1
+>. Y, PlAw21+¢}
n=1k=k,"+1
< 0.

Thus, by the Borel-Cantelli lemma, (2.3) follows from (2.4).
Step 3. (1.4) follows from (2.3) if we show that

(2.10) liminf sup sup sup |X(s)—X(s—h)|/d(T,t)>1 a.s.
T—o00 0<t<T t<s<T 0<h<t

Forn=1,2,---,set T, = e", and let T be in T;, < T < Ty 41. Then

sup sup sup |X(s)— X(s—h)|/d(T,t)
0<t<Tt<s<T 0<h<t

> sup |X(s)—X(s—1)|/d(Tn+1,1)
1<s<T,
| X(s) —X(s=1)]y n \1/2
1gss}lng,, o(1)v2n (n + 1)
()"
"\n+1 ’

To prove (2.10), it is sufficient to show that, for any 0 < e < 1,
0

(2.11) ZP{Bn <V1-¢} < oo,
n=1

because, if (2.11) holds, then

liminf B, > 1 a.s.
n—oo
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by the Borel-Cantelli lemma.
First suppose that 0 < a@ < 1/2. To apply Lemma 2.4, let u, =
{(2 = 2¢)n}/2. Then, we have

P{BnS\/l—E}SP{ sup X(S)—X(s_l)gun}

1<s<Tn o(1)

-T,
< exp {——e‘““z/z} < exp(—ce®™).

V27 (up + 1)

This yields (2.11).
Next assume that 1/2 < a < 1. For given a, there exist a big number
M > 0 and integers n such that

(2.12) 2t/ (=) « M < e,

Consider a sequence of integers k,, = [e" /M ] Fori=1,2,---,ky, define
Y(3) = {X(Mi)— X(Mi—1)}/o(1). It follows that, for any 0 < € < 1,

P{B,<+V1-¢}< P{ sup X(s) - X(s - 1) < un}

(2.13) 1€s<Tn o(1) -
< P{l‘ﬁ%’én Y (i) < un},

where u, = {(2 — 2¢)n}*/2. Let r(i,5) = Cov(Y(:),Y (4)),t # j, and
let | := i— 37 > 1, without loss of generality. Using the relation ab =
(a® + b — (a — b)?) /2 and the mean-value theorem, we have

(@9 = |E{Y ()Y ()}

2_0_21(_1_)| — 2(|Mi — Mjl) + o>(|Mi — Mj + 1))

+ 0% (|Mi— Mj - 1|) — o*(|Mi — Mj])|
1 Q a
= 5|(Ml +1)2 — (M1)%™ — ((M1)>* — (M1 - 1)**)]
< 2a(2a — 1) (M1 — 1)2~D < 20(2a — 1) (M1 1.
It follows from (2.12) that

la—l < l—V,

76, < 3
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where v = 1 —a > 0. To estimate the upper bound of (2.13), let us
apply Lemmas 2.5 and 2.6 for &, = Y (¢),i = 1,2,--- , kn, and |ry;| =
|r(i,5)] <17%, l=4—3>1 Then

(2.14) P{B, <v/T—¢} < {1 — ®(uy)}* + Ce~%m

for some o > 0. Since 1 — ®(u,) < exp(—®(un)), we have, for all large
n,

q)(u”)z_;_(l 1

Vo \um ‘1;'3‘) exp(—un?/2) > Cexp(—(1 — €)n)

and hence
{1 — ®(un)}* < exp(—ce™).

In the sequel, (2.14) yields
P{Bn < V1 —¢} < cexp(—don)

and (2.11) holds true. (1.2) and (1.3) follow immediately from (1.1) and
(1.4). O

PROOF OF COROLLARY 1.1. From Theorem 1.1 and (1.4), we have

1> limsup sup sup sup |X(s)—X(s—h)|/d(T,t)
T—oo ap<t<Tt<s<TO0<h<t

> limsup sup sup |X(s)— X(s—1¢)|/d(T,1t)
T—oo ar<t<Tt<ls<T

> limsup sup sup |X(T)— X(T —s)|/d(T,1)
T—oo ap<t<T 0<s<t

> limsup sup |X(T) - X(T —t)|/d(T,t)
T—oo ar<tLT

> limsup | X (T)|/d(T,T) =1 as.

T—oo
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