Absolute phase identification algorithm in a white light interferometer using a cross-correlation of fringe scans

백색광 간섭기에서 간섭 무늬의 상호 상관관계 함수를 이용한 절대 위상 측정 알고리즘

  • Kim, Jeong-Gon (Dept. of Information and Communication Eng., Hansei University)
  • 김정곤 (한세대학교 정보통신공학과)
  • Published : 2000.07.31

Abstract

A new signal processing algorithm for white light interferometry has been proposed and investigated theoretically. The goal of the algorithm is to determine the absolute optical path length of an interferometer with very high precision (<< one optical wavelength). The algorithm features cross-correlation of interferometer fringe scans and hypothesis testing. The hypothesis test looks for a zero order fringe peak candidate about which the cross-correlation is symmetric minimizing the uncertainty of misidentification. The shot noise limited performance of the proposed signal processing algorithm has been analyzed using computer simulations. Simulation results were extrapolated to predict the misidentification rate at Signal to-Shot noise ratio (SNR) higher than 31 dB. Root-mean-square phase error between the computer-generated zero order fringe peak and the estimated zero order fringe peak has been calculated for the changes of three different parameters (SNR, fringe scan sampling rate, coherence length of light source). Results of computer simulations showed the ability of the proposed signal processing algorithm to identify the zero order fringe peak correctly. The proposed signal processing algorithm uses a software approach, which is potentially inexpensive, simple and fast.

본 논문에서는 백색광 간섭현상 (white light interferometry)을 위한 신호처리 알고리즘을 제안한다. 제안하는 알고리즘으로 간섭기의 광경로 절대길이 (absolute optical path length)를 정확하게 측정할 수 있다. 그리고 제안하는 알고리즘은 간섭 무늬 (fringe scan)의 상호 상관관계 함수 (cross-correlation function)와 가설 검증을 사용한다. 가설 검증은 간섭 무늬의 상호 상관관계 함수가 대칭이 되는 봉우리를 영차 간섭 봉우리 (zero order fringe peak) 후보자로 선정함으로써 영차 간섭 봉우리를 오판할 확률을 줄인다. 산탄잡음(shot noise)이 제안된 알고리즘의 성능에 미치는 영향을 컴퓨터 모의 실험을 통하여 조사하였다. 모의 실험결과와 보외법 (extrapolation)을 사용하여 신호대산탄잡음비 (signal-to-shot noise ratio)가 31 dB 보다 클 때의 알고리즘의 성능을 예측하였다. 간섭 봉우리의 세 가지 매개변수 변화 (신호대산탄잡음비, 간섭 스캔 샘플링율 광원의 가간섭성 길이)에 따른 영차 간섭 봉우리 추정 오차를 계산하였다. 모의 실험 결과를 통하여 제안한 알고리즘이 영차 간섭 무늬 봉우리를 정확하게 판별할 수 있음을 보여주었다. 제안하는 신호처리 알고리즘은 소프트웨어적인 기법으로서 경제적이고 속도가 빠르며 간단한 알고리즘이다.

Keywords

References

  1. IEEE Journal of Quantum Electronics v.QE-18 Optical fiber sensor technology IEEE Journal of Quantum Electronics T.G. Giallorenzi;J.A. Bucaro;A.Dandridge;G.H. Sigel, Jr;J.H. Cole;S.C. Rashleigh;R.G. Priest
  2. Fiber optic sensors E. Udd(ed.)
  3. IEEE transactions on Components, Hybrids and Manufacturing technology v.13 no.1 Applications of fiber-optic sensors A.D. Kersey;A.Dandridge
  4. Electric Power System Research v.30 Fiber optic sensing applications in the electric power industry Kim D;Jovanovich
  5. Proceedings of 7th Optical Fibre Sensors Conference White-light interferometry in optical fibre sensors H.C. LeFerve
  6. Journal of Lightwave Technology v.9 no.1 Fiber-optic Fabry Perot temperature sensor Using a low-coherence light source C. Lee;H.F. Taylor
  7. Australian Conference on Optical Fibre Technology v.94 A large operating range fibre temperature sensor employing low coherence interferometry S. C. Kaddu;S. F. Collins;D. J. Booth
  8. IEEE Transactions on Intrumentation and Measurement v.44 no.3 White-light interferometric fiber-optic pressure sensor W. J. Bock(et al.)
  9. SPIE Fiber Optic Smart Structures and Skins Ⅳ v.1588 Demodulation of a fiber Fabry-Perot strain sensor using white light interferometry G. Zuliani(et al.)
  10. Optical fibre sensor technology K.T.V Grattan;B.T. Meggitt(ed.)
  11. Applied Optics v.31 no.28 Digital signal processing techniques for electronically scanned optical-fibre white light interferometry S.Chen(et al.)
  12. Electronics Letter 8th v.23 no.21 Interferometric fibre-optic sensor using a short-coherence-length source A.S. Gerges(et al.)
  13. Ph.D. Dissertation A new signal processing algorithm for white light interferometry Jeong Gon Kim
  14. Probabilistic methods of signal and system analysis G.R. Cooper;C.D. McGillem
  15. Fiber optic networks P. Green, Jr