DOI QR코드

DOI QR Code

The Formation of Metal (M=Co(II), Ni(II), and Cu(II)) Complexes by Aminosilanes Immobilized within Mesoporous Molecular Sieves

  • Published : 1999.03.20

Abstract

The immobilization of APTMS(3-(2-aminoethylamino)propyltrimethoxysilane) and AAPTMS(3-(2-(2-aminoethyl)aminoethylanino)propyltrimethoxysilane) on the surface of high quality mesoporous molecular sieves MCM-41 and MCM-48 have been confirmed by F.T.-IR spectroscopy, Raman spectroscopy, 29Si solid state NMR, and a surface polarity measurement using Reichardt's dye. The formation of metal (Co(Ⅱ), Ni(Ⅱ), and Cu(Ⅱ)) complexes by immobilized aminosilanes have been investigated by photoacoustic spectroscopy(PAS). The assignment of UV-Vis. PAS bands makes it possible to identify the structure of metal complexes within mesoporous molecular sieves. Co(Ⅱ) ion may be coordinated mainly in a tetrahedral symmetry by two APTMS onto MCM-41, and in an octahedral one by two AAPTMS. Both Ni(Ⅱ) and Cu(Ⅱ) coordinated by aminosilanes within MCM-41 form possibly the octahedral complexes such as [Ni(APTMS)2(H20)2]2+, [Ni(AAPTMS)2]2+, [Cu(APTMS)2(H2O)2]2+, and [Cu(AAPTMS)(H2O)3]2+, respectively. The PAS band shapes of complexes onto MCM-48 are similar to those of corresponding MCM-41 with the variation of PAS intensity. Most of metal ion(Ⅱ) within MCM-41 and MCM-48 are coordinated by aminosilanes without the impregnation on the surface.

Keywords

References

  1. Nature v.359 Kresge, C. T.;Leonowicz, M. E.;Roth, W. J.;Vatuli, J. C.;Beck, J. S.
  2. J. Am. Chem. Soc. v.114 Beck, J. S.;Vartuli, J. C.;Roth, W. J.;Leonowicz, M. E.;Kresge, C. T.;Schmitt, K. D.;Chu, C. T.-W.;Olson, D. H.;Sheppard, E. W.;McCullen, S. B.;Higgins, J. B.;Schlenker, J. L.
  3. Nature v.378 Maschmeyer, T.;Rey, F.;Sankar, G.;Thomas, J. M.
  4. Microporous Mater v.2 Chen, C.-Y.;Li, H.-X.;Davis, M. E.
  5. Chem. Commun. v.65 Liu, C.-J.;Li, S.-G.;Pang, W.-Q.;Che, C.-M.
  6. Chem. Commun. Rao, Y. V. S.;Vos, D. E. D.;Bein, T.;Jacobs, P. A.
  7. Chem. Commun. O'Brien, S.;Tudor, J.;Barlow, S.;Drewitt, M. J.;Heyes, S. T.;O'Hare, D.
  8. J. Chem. Soc., Faraday Trans. v.93 no.1 Cheng, C.-F.;Park, D. H.;Klinowski, J.
  9. Chem. Commun. Kim, J. M.;Kim, S. K.;Ryoo, R.
  10. J. Colloid Interface Sci. v.160 Tanev, P. T.;Vlaev, L. T.
  11. J. Appl. Phys. v.47 Rosencwaig, A.;Gersho, A.
  12. Bull. Korean Chem. Soc. v.16 Park, D. H.;Lee, K. W.;Choe, S. J.
  13. Angew. Chem., Int. Ed. Engl. v.34 Chen, J.;Li, Q.;Xu, R.;Xiao F
  14. J. Chem. Commun. Tanever, S. J.;Clark, J. H.;Gray, G. W.;Heath, P. A.;Macquarrie, D.
  15. Langmuir v.6 Michels, J. J.;Dorsey, J. G.
  16. J. Am. Chem. Soc. v.83 Cotton, F. A.;Goodgame, D. M. L.;Goodgame, J.
  17. J. Catal v.28 Anderson, J. H. Jr
  18. Advanced Inorganic Chemistry Cotton F. A.;Wilkenson, G. A.
  19. Mol. Phys. v.27 Frost D. C.;McDowell, C. A.;Woolsey, I. S.
  20. J. Catal. v.26 Anderson, J. H.
  21. Inorg. Chem. v.23 Sano, M.;Maruo, T.;Masuda, Y.;Yamatera, H.