리튬이온 전지용 카본(MCMB) 부극재료의 전지반응 특성

A Study on the Characteristics of Cell Reaction for the MCMB Carbon as Anode in Li-ion Batteries

  • 발행 : 1999.02.01

초록

흑연 및 카본재료는 알칼리 금속을 intercalation/de-intercalation 시킬수 있는 특성을 지니고 있으며, 또한 Li-intercalated carbon의 화학 potential이 Li 금속에 가까운 낮은 값을 지닌 특성으로 리튬 이차전지의 anode 전극재료로서 널리 쓰일 가능성이 매우 크다. 본 연구에서는 카본재료 중 mesocarbon microbeads (MCMB)를 리튬 이차전지의 anode 전극재료로 사용하여 전지반응을 수행하고, 전극의 충.방 전 특성과 전극계면 반응특성에 대하여 연구하였다. 즉, Li/carbon(MCMB) 전지 cell를 제작하고 전해질과 전극계면에서 일어나는 전기화학 반응특성을 충.방 전 시험, Potentionat/Galvanostat 시험, FT-IR 분석, XRD 및 SED 분석에 의하여 고찰하였다. 전지반응이 진행되면서 전극과 전해질 계면에서 고체상태의 부동태 막 (passivation film)이 형성되었으며, 일단 형성된 막은 전해질 내에 용해되지 않고 충.방 전 횟수가 증가하면서 두께가 증가되었다. 또한, 이러한 전극 계면에서 형성된 부동태 막과 중전용량과의 관계에 대하여 고찰하였다.

Graphite and carbonaceous materials showed an excellent capability as a negative electrode in Li-ion batteries because Li-ion can be intercalated and de-intercalated reversibly within most carbonaceous materials of layered structure. Also, the electrochemical potential of Li-intercalated carbon anode is almost identical with that of Li metal. In the present study, mesocarbon microbeads(MCMB) were used as anode electrode and its properties of charge/discharge and interfacial reaction with electrolyte were studied by Potentiostat/Galvanostat test, FT-IR analysis, XRD and SEM. The passivation film of solid-state was formed as the interface between electrode and electrolyte as the cell reaction began and, once formed, became thicker with repeated charge/discharge process. Also, the relationship between the passivation film formed at the electrode interface and storage capacity was discussed.

키워드

참고문헌

  1. Electrochimica Acta v.38 no.9 Historical Development of Rechargeable Li-thium Batteries in Japan Z. I. Takehara;K. Kanamura
  2. Mater. Sci. and Eng. v.31 Lattice Vibrations in Graphite and Intercalation Coumpounds of Graphite M. S. Dresselhaus;G. Dresselhaus;P. C. Eklund;D. D. L. Chung
  3. J. Power Sources v.26 Carbon as Negative Electrodes in Lithium Secondary Cells R. Kanno;Y. Takeda;T. Ichikawa;K Nakanishi;O. Yamamoto
  4. Electrochemical and Physicochemical Properties K. Kinoshita
  5. J. Electrochem. Soc. v.140 no.4 Electrochemical Intercalation of Ithium into Graphite Z. X. Shu;R. S. McMillan;J. J. Murray
  6. Science v.270 Mechanisms for Lithium Insertion in Carbonaceous Materials J. R. Dahn;T. Zheng;Y. Liu;J. S. Xue
  7. J. Electrochem. Soc. v.143 Optimizing Pyrolysis of Sugar Carbons for Use as Anode Materials in Lithium-ion Batteries W. Xing;J. S. Xue;J. R. Dahn
  8. J. Electrochem. Soc. v.143 no.7 Hysteresis during Lithium Insertion in Hydrogen-Containing Carbons T. Zheng;W. R. McKinnon;J. R. Dahn
  9. J. Electrochem. Soc. v.143 no.11 Correlation between Lithium Intercalation Capacity and Microstructure in Hard Carbons W. Xing;J. S Xue;T. Zheng;A. Gibaud;J. R. Dahn
  10. 13th Int'l Seminar on Prim. & Sec. Battery Tech. & Appl. Interfacial Phenomena at the Carbon-Lithium Electrode R. Yazami;M. Deschamps
  11. Electrochem. Soc. Inc. v.97 no.18 Digradation of Mixed Carbonate Electrolytes on $Li^+-ion$ Battery Graphite Electrodes;An In-Situ DEMS Study R. Imhof;P. Novak
  12. Electrochem. Soc. Inc. v.97 no.18 Study of SEI Formation on HOPG in Different Electrolytes D. Bar-Tow;E. Peled;L. Burstein
  13. Synthetic Metals v.44 Observations of Staging in the Electro-chemical Intercalation of Lithium into Graphite from Dimethyl Sulfoxide Solutions P. Schoderbock;H. P. Boehm