Xylanase를 생산하는 내열성 Bacillus속 균주의 분리와 효소생산 조건

isolation of Xylanase-producing Thermo-tolerant Bacillus sp. and Its Enzyme Production

  • 박영서 (경원대학교 식품생물공학과) ;
  • 강미영 (경원대학교 식품생물공학과) ;
  • 장학길 (경원대학교 식품생물공학과) ;
  • 박귀근 (경원대학교 식품생물공학과) ;
  • 강종백 (경원대학교 화학과) ;
  • 이정기 (생명공학연구소 미생물효소R.U.) ;
  • 오태광 (생명공학연구소 미생물효소R.U.)
  • 발행 : 1999.10.01

초록

Thermo-tolerant bacterium producing the xylanase was isolated from soil and identified as Bacillus pumilus. This strain, named Bacillus pumilus TX703, was able to grow ad produce xylanase at the culture temperature of 5$0^{\circ}C$. The maximum xylanase production was obtained when 1%(w/v) birchwood xylan and 1% (w/v) soytone were used as carbon source and nitrogen source, respectively. The biosynthesis of xylanase was under the catabolite repression induced by glucose in the culture medium, and it was completely inhibited in the presence of 0.2% (w/v) glucose. The maximum activity of xylanase was observed from pH8.0 to 9.0 and from 50 to 6$0^{\circ}C$ and the enzyme was highly heat-stable, whose activity remained was over 50% at 8$0^{\circ}C$, and was quite stable from pH5.0 to 10.0.

키워드

참고문헌

  1. Trends Biotechnol. v.3 Microbial xylanolytic systems Biely, P.
  2. Microbiol. Rev. v.45 Cyclic nucleotides in procaryotes Botsford, J. L.
  3. Mol. Microbiol. v.15 Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram-positive bacteria Deutscher, J.;E. Kster;U. Bergstedt;V. Charrier;W. Hillen
  4. J. Microbiol. Biotechnol. v.3 Selection and characterization of catabolite repression resistant mutant of Bacillus firmus var. alkalophilus producing cyclodextrin glucanotransferase Do, E. J.;H. D. Shin;C. Kim;Y. H. Lee
  5. Bacillus Molecular Genetics and Biotechnology Applications Ganesan, A. T.;J. A. Hoch
  6. Biochim. Biophys. Acta v.484 Studies on xylan degrading enzymes. I. Purification and characterization of endo-1,4-β-xylanase from Aspergillus niger str. 14. Gorbacheba, I. V.;N. A. Rodionova
  7. J. Bacteriol. v.175 Signal transduction by the bacterial phosphotransferase system Grundy, F. J.;D. A. Waters;S. H. G. Allen;T. M. Henkin
  8. Mol. Microbiol. v.5 Catabolite repression of α-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escheichia coli lacI and galR repressors Henkin, T. M.;F. J. Grundy;W. L. Nicholson;G. H. Chambliss
  9. Agric. Biol. Chem. v.37 Xylanase produced by alkalophylic Bacillus no. C-59-2. Horikoshi, K.;Y. Atsukawa
  10. Mol. Microbiol. v.15 Catabolite repression in Bacillus subtilis: A global regulatory mechanism for the Gram-positive bacteria? Hueck, C. J.;H. Wolfgang
  11. J. Bacteriol. v.76 Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression Kraus, A.;C. Hueck;D. Gartner;W. Hillen
  12. J. Bacteriol. v.171 Cis sequences involved in modulating expression of Bacillus licheniformis amyL in Bacillus subtilis: Effect of sporulation mutations and catabolite repression resistance mutations on expression Laoide B. M.;D. J. J. McConnell
  13. The Lactose Operon Glucose effects: Inducer exclusion and repression Magasanik, B.;J. R. Beckwith(ed.);D. Zipser(ed.)
  14. Escherichia coli and Salmonella typhimurium Regulation of carbon and nitrogen utilization Magasanik, B.;F. C. Neidhardt;F. C. Ncidhardt(ed.);J. L. Ingraham(ed.);B. Magasanik(ed.);K. B. Low(ed.);M. Schaechter(ed.);H. E. Umbarger(ed.)
  15. Agric. Biol. Chem. v.47 Purification and properties of endoxylanase produced by Bacillus pumilus Panbangred, W.;A. Shinmyo;S. Kinoshita;H. Okada
  16. Microbiol. Rev. v.57 Phosphoenolpyruvate: Carbohydrate phosphotransferase systems of bacteria Postma, P. W.;J. W. Lengeler;G. R. Jacobson
  17. J. Cell. Biochem. v.51 The role of phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, in the regulation of carbon metabolism in Gram-positive bacteria. Reizer, J.;A. H. Romano;J. Deutscher
  18. EMBO J. v.8 Mechanistic and physiological consequences of Hpr (ser) phosphorylation on the activities of the phosphoenolpyruvate:sugar phosphotransferase system in Gram-positive bacteria: Studies with site specific mutants of HPr Reizer, J.;S. L. Sutrina;M. H. Saier, Jr.;G. C. Stewart, A. Peter-kofsky;P. Reddy
  19. J. Bacteriol. v.156 Genes controlling xylan uitlization by Bacillus subtilis Roncero, M. I.
  20. The New Biologist v.3 A multiplicity of potential carbon catabolite repression mechanisms in prokaryotic and eukaryotic microorganisms Saier, M. H. Jr.
  21. J. Biol. Chem. v.195 Notes on sugar determination Somogyi, M.
  22. J. Cell. Biochem. v.51 Catabolite repression in the Gram-positive bacteria: Generation of negative regulators of transciption Stewart, G. C.
  23. Wood Sci. Technol. v.1 Recent progress in the chemistry of wood hemicelluloses Timell, T. E.
  24. Proc. Natl. Acad. Sci. USA v.87 Site-directed mutagenesis of catabolite repression operator sequence in Bacillus subtilis Weickert, M. J.;G. H. Chambers
  25. Microbiol. Rev. v.52 Multiplicity of β-1,4-xylanase in microorganisms: Functions and applications Wong, K. K. Y.;L. U. L. Tan;J. N. Saddler
  26. Top. Enzyme Ferment. Biotechnol. v.8 Xylanases: Functions, properties and applications Woodward, J.
  27. J. Bacteriol. v.176 Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site Wray, L. V., Jr.;F. K. Pettengill;S. H. Fisher
  28. Agric. Biol. Chem. v.45 Purification and properties of thermostable xylanase from Talaromyces byssochlamydoides YH-50 Yoshioka, H.;N. Nagato;S. Chavanich;N. Nilubol;S. Hayashida