An Improved Fractal Color Image Decoding Based on Data Dependence and Vector Distortion Measure

데이터 의존성과 벡터왜곡척도를 이용한 개선된 프랙탈 칼라영상 복호화

  • 서호찬 (부경대학교 전자공학과) ;
  • 정태일 (부경대학교 전자공학과) ;
  • 류권열 (위덕대학교 컴퓨터공학과) ;
  • 권기룡 (부산외국어대학교 전자공학과) ;
  • 문광석 (부경대학교 전자공학과)
  • Published : 1999.09.01

Abstract

In this paper, an improved fractal color image decoding method using the data dependence parts and the vector distortion measure is proposed. The vector distortion measure exploits the correlation between different color components. The pixel in RGB color space can be considered as a 30dimensional vector with elements of RGB components. The root mean square error(rms) in RGB color for similarity measure of two blocks R and R' was used. We assume that various parameter necessary in image decoding are stored in the transform table. If the parameter is referenced in decoding image, then decoding is performed by the recursive decoding method. If the parameter is not referenced in decoding image, then the parameters recognize as the data dependence parts and store its in the memory. Non-referenced parts can be decoded only one time, because its domain informations exist in the decoded parts by the recursive decoding method. Non-referenced parts are defined the data dependence parts. Image decoding method using data dependence classifies referenced parts and non-referenced parts using information of transform table. And the proposed method can be decoded only one time for R region decoding speed than Zhang & Po's method, since it is decreased the computational numbers by execution iterated contractive transformations for the referenced range only.

본 논문에서는 데이타 의존성과 벡터왜곡척도를 이용하여 개선된 칼라영상을 복호화하였다. 프랙탈칼라영상의 복원방법은 Zhang과 Po의 벡터왜곡척도를 이용한 RGB 칼라 성분간의 상관관계를 고려하여 부호화한 압축파일을 사용하여 수렴 될 복원영상을 부호화시 만들어진 변환표의 정보를 바탕으로 참조된 정 의 역 부분이 기존의 독립적인 반복변환에 의해 수렴되었고 참조되지 않은 부분의 정의역은 데이타의존성을 갖는 영역으로 이미 수렴된 부분에 존재하므로 마지막 반복변환시 한번만에 복호화가 가능하다. 데이타의존성 부분이 차지 하는 만큼 복호화 과정에서 불필요한 계산량이 제거되었고, R영역에서 검색한 데이타 의존영역을 G,B영역에 그대로 사용하여 고속복호화가 가능하였다.

Keywords