Hydrothermal Antimony Deposits of the Hyundong Mine : Geochemical Study

현동 광산의 열수 안티모니 광화작용 : 지화학적 연구

  • Seong-Taek Yun (Department of earth and Environmental Sciences, Korea University)
  • Published : 1999.10.01

Abstract

The antimony deposits of the Hyundong mine, located in the northeastern part of the Sobaegsan massif, occur as hydrothermal quartz+carbonate veins and stockworks which fill the fault fractures developed in Precambrian metamOlphic rocks (mainly, granitic gneiss). Hydrothermal alteration occurs commonly in the vicinity of mineralized veins and is characterized by sericitization and silicification. A K-Ar age of alteration sericite is 139.2$\pm$ 4.4 Ma, implying the early Cretaceous age of mineralization, possibly in association with intrusion of nearby acidic dikes (mainly, quartz porphyry). The hydrothermal mineralization occurred in five mineralization stages. These are: (I) stage I, characterized by deposition of chalcedonic quartz; (2) stage II, deposition of quartz with base-metal sulfides and stibnite; (3) stage III, deposition of quartz and carbonates (calcite, dolomite, ankerite, rhodochrosite) with various antimony-bearing minerals such as stibnite, polybasite, berthierite, native antimony, gudmundite and ullmannite; (4) stage IV, deposition of calcite with stibnite; and (5) stage V, deposition of barren calcite. Antimony occurs mostly as stibnite within stages II to IV veins, which has various habits including disseminated, veinlets and euhedral coarse crystals. Fluid inclusion studies indicate that hydrothermal mineralization at Hyundong occurred from the fluids with temperature and salinity of $330^{\circ}$C to 120 and 5.3 wI. % equiv. NaCI. The temperature and salinity of ore fluids systematically decreased with elapsed time in the course of mineralization, possibly due to the influx of larger amounts of meteoric groundwater. The deposition of antimony-bearing minerals occurred at low temperatures «$250^{\circ}$C), mainly due to the cooling and dilution of fluids. Based on the evidence of fluid boiling during the early stage II mineralization, the mineralization occurred under low pressure conditions (about 80 bars, corresponding to depths of about 350 m under hydrostatic pressure regime). Thermodynamic considerations of ore . mineral assemblages indicate that antimony deposition also occurred as the results of decreases in temperature and sulfur fugacity of hydrothermal fluids. Calculated sulfur isotope composition of ore fluids ($\delta^{34}S_{\Sigma s}$=5.4 to 7.8$\textperthousand$) indicates an igneous source of sulfur.

현동 안티모니 광상능 소백산 육괴의 북동부 지역에 위치하며, 선캠브리아기 변성암류(주로 화강암질 편마암)에 발달하는 단층 열극을 단층 열극을 충진한 석영+탄산염 광맥 및 망상맥으로 산츨된다. 광맥 인접부에는 견운모화 및 규화 작용으로 특징되는 열수 변질대가 발달된다. 변질대 견운모의 K-Ar 연령은 139.2$\pm$4.4 Ma로서 백악기초의 광화 시기를 나타내는데, 광화작용은 산성 암맥(주로 석영 반암)의 관입과 관련되었으리라 사료된다. 열수 광화작용은 5회에 걸쳐 진행되었다. 광화1기에는 옥수질 석영이 침전되었다. 광화 2기에는 천금속(base-metal) 황화 광물 및 휘안석을 수반한 석영맥이 형성되었다. 광화 3기에는 휘안석, 농홍은석, 버티어라이트, 자연 안티모드, 구드문다이트, 울마나이트 등 다양한 함안티모니 광물이 석영 및 탄산염 광물(방해석, 돌로마이트, 앵커나이트, 능망간석)에 수반되어 정출되었다. 광화 4기에는 휘안석을 수반한 방해석이, 그리고 광화 5기에는 barren한 방해석이 침전되었다. 안티모니느 광화 2기에소 4기에 걸쳐 주로 휘안석으로 산출되며, 산점상, 세맥상 및 조립질 자형 결정 등 다양한 형태를 갖는다. 유체 포유물 연구에 의하면, 열수 광화작용은 $\leq$ 5.3wt % NaCl 상당 염농도의 유체로부터 120~$330^{\circ}C$의 온도에서진행되었다. 광화 유체의 온도 및 염농도는 광화작용의 진행과 더불어 점진적으로 감소하였는데, 이는 열수계 내로 다량의 순환 강우가 유입되었음을 지시한다. 함안티모니 광물의 침전은 비교적 저온(<$250^{\circ}C$)에서 주로 유체의 냉각 및 휘석 작용에 의해 진행되었다. 광화 2기 초기에는 인지되는 유체의 비등현상에 의하여, 광화적용의 압력에 의하여, 광화작용의 압력은 비교적 낮았음(정수압 조건에서 약 350m의 심도에 해당하는 약 80 bar)을 알 수 있다. 광석광물의 조합에 대한 열역학적 고찰 결과, 안티모니 침전은 열수 유체의 온도 및 유황 분압의 감소에 기안하였다. 광화 유체의 활동위원소 조성($\delta^{34}S_{\Sigma s}$)은 5.4~7.8$\textperthousand$이었으며, 이는 화성 기원을 지시한다.

Keywords

References

  1. Econ. Geol. v.66 The Fe-Sb-S system Barton, P.B., Jr.
  2. Geochim. Cosmochim. Acta v.57 Revised equation and table for determining the freezing point depression of H₂O-NaCI solutions Bodnar, R.J.
  3. Econ. Geol. Geol. v.68 Thermochemical approximations for sulfosalts Craig, J.R.;Barton, P.B., Jr.
  4. Zeitschr. Neorgan. Khimii v.7 Preparation of sulfur dioxide for isotopic analysis Grinenko, V.A.
  5. Econ. Geol. v.66 The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure Haas, J.L.
  6. Jour. Korea Inst. Mining Geol. v.16 Geochronology and petrogenetic processes of the so-called Hongjesa Granite in the Seokpo-Deogku area Kim, Y.J.;Lee, D.S.
  7. Am. Mineral. v.14 Phase relations involving arsenopyrite in the system Fe-As-S and their application Kretschmar, U.;Scott, S.D.
  8. Jour. Geol. Soc. korea v.34 Epithermal minerlization of the wangje anitomy deposit, Korea: geochemistry and mineralogy Lee, C.H.;Choi, S.W.;Hur, S.D.;Hwang, J.
  9. Jour. Geol. soc. Korea v.20 Metamorphic studies on the so-called yulri and Weonnam Groups in the Mt. Taebaeg area Lee, S.M.;Kim, H.S.
  10. Mineral. Deposita v.22 Fluid inclusions study of the Bournac polymetallic (Sb-As-Zn-Fe-Cu...) vein deposit (Montagne Noire, France) Munoz, M.;Shepherd, T.J.
  11. Sources, transport and deposition of metals The massive stibnite lode-deposits of the French Paleozoic basement. Evaluation of physicochemical factors for stibinite presipation from thermodynamic modelling Munoz, M.;Courjault-Rade, P.;Tollon, F.;Fortune, J.P.;Belhaj, O.;Pagel, M.(ed.);Leroy, J.L.(ed.)
  12. Geology of Korea Ore mineralization. Geological Society of Korea Oh, M.S.
  13. Geochemistry of hydrothermal Ore Deposits (3rd ed.) sulfur and carbon isotopes Ohmoto, H.:Goldhaber, M.B.
  14. Geochemistry of hydrothermal ore Deposits (2nd ed.) Isotopes of sulfur and carbon Ohmoto, H.;Rye, R.O.;Barners, H.L.(ed.)
  15. Geology and Mineral Resources of Korea, Depsrtment of Geology Alumi of Yonsei UNiversity, Seoul Metallic ore deposits Park, H.I.
  16. Jour. Res. U.S. Geol. Survey v.5 Pressure corrections for fluid inclusions homogenization temperatures based on the volumertric properties of the system NaCI-H₂O Potter, R.W.Ⅲ
  17. Rev. Mineralogy v.12 Fluid inclusions Roedder, E.
  18. Econ. Geol v.66 Sphalerite geothermometry Scott, S.D.;Barners, H.L.
  19. Econ. Geol. v.92 Controls of mineral paragenesis in the system Fe-Sb-S-O Wiiliams-Jones, A.E.;Normand, C.