BIFURCATION ANALYSIS ON AN UNFOLDING OF THE TAKENS-BOGDANOV SINGULARITY

  • Han, Gil-Jun (Department of Mathematics Education Dankook University)
  • Published : 1999.03.01

Abstract

A complete analysis of the equation x'=y, y'=$\beta$y-$\alpha$x2+$\alpha$x2+$\delta$xy, where $\alpha$ and $\beta$ small, describing a particular unfolding of the Takens-Bogdanov singularity is presented.

Keywords

References

  1. Functional Anal. Appl. v.9 Versal deformations of a singular point on the plane in the case of zero eigenvalues R. I. Bogdanov
  2. Applied Mathematical Sciences v.35 Applications of Center Manifold Theory J. Carr
  3. Nonlinearity v.3 Cubic Lienard Equations with Linear Damping F. Dumortier;C. Rousseau
  4. Applied Mathematical Sciences v.42 Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields J. Guckenheimer;P. Holmes
  5. Quarterly of Applied Mathematics An Unfolding of the Takens-Bogdanov Singularity P. Hirschberg;E. Knobloch
  6. Center For Applied Mathematics A Dynamical System Toolkit with on Interactive Graphical Interface S. Kim;J. Guckenheimer
  7. J. Fluid Mech. v.108 Nonlinear periodic convection in a double-diffusive systems E. Knobloch;M. R. E. Proctor
  8. Publ. Math. IHES v.43 Singularities of Vector Fields F. Takens
  9. Introduction to Applied Nonlinear Dynamical System and Chaos S. Wiggins