References
- Ann. of Math v.128 A sharp inequality of J. Moser for higher order derivatives D. R. Adams
- Int. Math. Research Notices v.1 Moser-Trudinger inequality in higher dimensions W. Beckner
- J. Diff. Geometry v.5 Riemannian structures in prescribed Gaussian curvature for compact 2-manifolds M. S. Berger
- Comm. in Math Physics v.149 Estimates and extremals for zeta function determinants on four-manifolds Branson;Chang;Yang
- Bull. des Science v.110 On the existence of an extremal for an inequality of J. Moser L. Carleson;S.-Y. A. Chang
-
Studia Math.
v.44
An inequality for the indefinite integral of a function in
$L^q$ M. Jodeit - Indiana Univ. Math. J v.20 A Sharp form of an Inequality J. Moser;N. Trudinger(ed.)
- Dynamical systems On a nonlinear problem in differential geometry J. Moser;M. M. Peixoto(ed.)
- Commun. Math. Phys. v.86 On the positivity of the effective action in a theory of random surfaces E. Onofri
- J. Funct. Anal. v.80 Extremals of determinants of Laplacians B. Osgood;R. Phillips;P. Sarnak
- J. Math. Mech v.17 On imbeddings into Orlicz spaces and some applications N. S. Trudinger