CHARACTERIZATIONS OF IDEAL WEAKLY \delta\theta-REFINABLE SPACES

  • Published : 1999.02.01

Abstract

In this paper, we are interested in studying weak covering properties in the presence of a countable compact condition. The purpose of this paper is to characterize an ideal weakly $\delta$$\theta$-refinable space and to show that every ideal weakly $\delta$$\theta$-refinable space is isocompact. Also, we consider the behavior under mappings of ideal weakly $\delta$$\theta$-refinable properties and productivity of ideal weakly $\delta$$\theta$-refinable properties.

Keywords

References

  1. Soviet Math. Dokl. v.21 no.2 The star method, new classes of spaces and countable compactness A. V. Arhangel'skii
  2. Pacific J. Math. v.32 The compactness of countably compact spaces P. Bacon
  3. Settheoretic Topology Closed-completeness in spaces with weak covering properties R. L. Blair
  4. Topology Proceedings v.5 On a theorem of Chaber R. L. Blair
  5. Handbook of Set-theoretic Topology Covering Properties D. K. Burke
  6. Q & A in General Topology v.14 Isocompactness of weakly star reducible spaces M. H. Cho
  7. Pacific J. Math. v.80 A cushioning-type weak covering property S. W. Davis
  8. General Topology and Appl. v.9 On $F_r4- spaces S. W. Davis
  9. Pacific J. Math. v.33 Generalizations of realcompact spaces N. Dykes
  10. General Topology R. Engelking
  11. Math. Proc. Cambridge Phil. Soc. v.64 Alexander's theorem for real compactness A. Hayes
  12. Pacific J. Math. v.122 no.1 A new class of isocompact spaces and related results M. Sakai
  13. Handbook of Set-theoretic Topology Countably compact and sequentially compact spaces J. E. Vaughan
  14. Proc. Amer. Math. Soc. v.79 A covering property which implies isocompactness I J. M. Worrell, Jr;H. H. Wicke
  15. Topology Proc. v.4 A covering property which implies isocompactness Ⅱ H. H. Wicke;J. M. Worrell, Jr.
  16. Proc. Amer. Math. Soc. v.111 no.4 Characterizations of paracompactness and subparacompactness using star reducibility H. H. Wicke;J. M. Worrell, Jr.