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CHARACTERIZATIONS OF IDEAL
WEAKLY 40-REFINABLE SPACES

MyunG Hyun CHO

ABSTRACT. In this paper, we are interested in studying weak cover-
ing properties in the presence of a countable compact condition. The
purpose of this paper is to characterize an ideal weakly §-refinable
space and to show that every ideal weakly §8-refinable space is iso-
compact. Also, we consider the behavior under mappings of ideal
weakly d6-refinable properties and productivity of ideal weakly 66-
refinable properties.

1. Introduction

A space X is said to be isocompact ([2]) if every closed countably
compact subset of X is compact. The most obvious example of isocom-
pact spaces is a Lindelof space. Among the classes of spaces having
the isocompactness property are neighborhood F-spaces ([8]), spaces
satisfying property 0L ([7]), weakly [w;,00)"-refinable spaces ([14]),
d0-penetrable spaces ([4]), almost realcompact spaces ([9]), weakly 66-
refinable spaces ([14]), weakly Borel complete spaces ([12]), and pure
spaces ([1]).

In [12], Masami Sakai introduced a new large class of isocompact
spaces, called “k-neat spaces”. This class contains all of the above
mentioned classes. Moreover, he proved that every neat space is iso-
compact.

In [16), Wicke and Worrell defined a covering property, called star re-
ducible, possessed by all §6-refinable countably subparacompact spaces
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(Remark 1.4 in [16]) and also introduced weak star reducibility which
is obviously weaker than star reducibility. Recently, the author showed
([6]) that every ultrapure space is weakly star reducible, that every
weakly w1, 00)"-refinable space is weakly star reducible, and that every
weakly star reducible space is k-neat for any cardinal k. Thus a weakly
star reducible space is another space which is in the class of isocompact
spaces.

It turns out that there is much interplay between general covering
properties described using ultrafilters and general covering properties
characterized by maximal open ideals and generalized realcompactness
properties described in [9].

The purpose of this paper is to characterize an ideal weakly §6-
refinable space (Theorem 3.1, Theorem 3.2, and Theorem 3.8) and to
show that every ideal weakly 6-refinable space is isocompact (Theorem
3.6). Also, we consider the behavior under mappings of ideal weakly
d0-refinable properties (Theorem 3.9) and productivity of ideal weakly
d6-refinable properties (Theorem 4.1, Theorem 4.2, and Theorem 4.5).

This paper is organized as follows: Section 1 is an introduction.
Section 2 consists of preliminaries which involve definitions and basic
implications of weak covering properties. Section 3 is devoted to char-
acterizations of ideal weakly d6-refinable spaces which are main results
in this paper. Section 4 consists of some interesting results related to
products of ideal weakly d6-refinable spaces.

Throughout this paper, all spaces will be assumed to be 7} and we
use the following notation:

For any set A C X and a collection U of subsets of X, st(A,U) (the
star of U about A) denotes the set | J{U e U : UN A # 0}.

If z € A, st({z},U) is simply denoted by st(z,U). ord(z,U) =
{U € U : = € U}|, (where |E| denotes the cardinal of the set E),
[U]<¥ = {K CU: K is finite }, and [U]* = {K C U : K is countable }.

Also, if V is a collection of subsets of X and z € X, then V(z) =
{VeV:zeV}and I(z,V) =N V(z).

If V = {V,} is a family of collections of subsets of X, then we denote
by UVa = Uvey, V and JUYV = U(U Va).
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2. Preliminaries

We establish some convenient terminology used throughout the rest
of this paper. As far as topological concepts are concerned, we follow
[5] and [10]. First, we give the definition of a closed filter and its dual
concept, an open ideal.

DEFINITION 2.1. A collection F of closed subsets of a space X is
called a closed filter if
(a) 0 ¢ F,
(b) if Fy, F5 € F, then FENFe F,
(c) if F; is closed in X and F}; C Fy, and F} € F, then F; € F.

DEFINITION 2.2. A collection G of open sets in a space X is called
an open ideal if
(2) X ¢6,
(b) If U, Uy e g, then U, U Us e g,
(c) If Uy is open in X and U; € Uy € G, then U; € G.

An open ideal in a space X is a covering of X if UG = X. Through-
out this paper, we will use the abbreviation a moc ideal to denote a
maximal open covering ideal. However, a moc ideal in a space is called
a maximal open cover in some literatures (for example, [9]).

DEFINITION 2.3 ([3],[14]). A space X is said to be weakly 6-refinable
(resp. weakly 66-refinable) if for every open cover U of X there is an
open refinement G = J,,c, Gn of U such that if z € X there is some
n € w with 0 < ord(z,G,) < w (resp. 0 < ord(z,G,) < w).

Moreover, if each G,, covers X, then X is said to be 0-refinable (resp.
60-refinable or submeta-Lindeldf).

DEFINITION 2.4 ([1]). A countable family V = {V, : n € w} of
collections of subsets of a space X is called an wnterlacing on X if
{UUV = X and for each n € w, each V € V,, is open in JV,.

An interlacing V is called suspended (resp. 0-suspended) from a
family H of subsets of a space X if for every n € w and « € {J Vh, there
is a finite family X € [H]<“ (resp. a countable family K € [#]*) such
that st(z,V,) N (NK) = 0.
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A space X is called ultrapure if for each free closed collection F on
X there is an interlacing which is é-suspended from F.

A space X is called astral if for every countably prime free closed
filter F on X with c.i.p. there exists an interlacing which is §-suspended
from F.

A space X is called pure if for each free closed ultrafilter 7 on X
there is an interlacing which is §-suspended from F.

Note that ultrapure implies astral implies pure. It is known that in
the case of ultrafilters with the countable intersection property (c.i.p.),
the terms suspended and §-suspended coincide.

The following theorem is due to Arhangel’skﬁ.

THEOREM 2.5. Every weakly d6-refinable space X is ultrapure.
Proof. See ([1]). O

The following definition is a covering property which is weaker than
weakly d6-refinable.

DEFINITION 2.6 ([3]). An open cover G = |J{Gn : n € w} of a space
X is a O-penetration (resp. &6-penetration) of a cover U of X if for
every z € X, {I(z,Gn) : n € wand0 < ord(z,G,) <w} C U for some
U €U (resp. N{I(z,Gn) : n € wand0 < ord(z,Gn) < w} C U for some
U € U). A space X is f-penetrable (resp. §0-penetrable) if every open
cover of X has a f-penetration (resp. d6-penetration).

In fact, it is easy to check that every weak f-refinement (resp. weak
860-refinement) of U is a O-penetration (resp. df-penetration) of U.
However, it is known [4, Remark 2.1] that the converse is not true in
general.

In [14], if X is countably compact and weakly [w;,00)"-refinable,
then X is compact. This says that weakly w1, 00)"-refinable spaces are
isocompact.

There are other weak covering properties which imply isocompact-
ness. For example, Davis in [7] studied ‘property 6L’ and showed that
this property generalizes weak §6-refinability and implies isocompact-
ness. For other conditions which force a countably compact space to
be compact, see [13].
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THEOREM 2.7 ([1]). Every countably compact, pure space is com-
pact.

Proof. See [13]. a

REMARK. Theorem 2.7 shows that every pure space is isocompact.

For a cardinal &, the cofinality of k, denoted by cf(k), is the smallest
cardinal A such that x has a cofinal subset of cadinality A\. A cardinal
Kk is regular if K > w and cf(k) = .

DEFINITION 2.8 ([16]). A cover U of a space X is called regularly
rigid if no subcollection of U of cardinality less than || covers X and
|U| is regular or 1 < [U| < w.

DEFINITION 2.9 ({16]). A space X is called star reducible if for every
regularly rigid open cover H of X, there exists a sequence (G, : n € w)

of open covers of X such that for all p € X there exist n € w and
H' C H such that [H'| < |H| and H’' covers st(p,Gr).

DEFINITION 2.10 ([6]). A space X is called weakly star reducible
if for every uncountable regularly rigid open cover U of X there is a
collection V of collections of subsets of X such that:

HUUV=Xx,

(i) V| < [u],

(iii) for all G € V and for all G € G, G is open in [JG, and

(iv) for all p € X, there exist G € V and Y’ C U such that || < U]
and st(p,G) c JU".

The above definition is essentially based on Definition 4.8 in [16].
Clearly, weak star reducibility is obviously weaker than star reducibility
and every developable space is star reducible (Remark 1.5 in [16]) and
thus weakly star reducible.

Define for each free closed ultrafilter H on X with c.ip., A(H) =
min {|F|: F C H,(F = 0}. Note that A(H) is an uncountable regular
cardinal.

DEFINITION 2.11 ([12]). Let H be a free closed ultrafilter on X with
c.i.p. and k be a cardinal number. A system ({X,},{V,},{f+})yer is
called a k-neat system for H if the following are satisfied:

(1) IT] < A(H).
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(2) {X,},er is a cover of X and V, is an open collection of X such
that X, c JV, for each y € T.

(3) Each f, is a function from X,y to V, such that if A C X, |A| <
x and f,|A is injective, then the closure of A in | ]V, is contained
in UzGA f’Y(x)

(4) For each v € T and z € X, there exists H € H such that
fHzynX,NnH=40.

A space X is called a k-neat space if for each free closed ultrafilter
on X with c.i.p. there exists a x-neat system for %. An w-neat space
is merely called a neat space.

THEOREM 2.12 (Theorem 2.6 in [12]). Every neat space is isocom-
pact.

3. Characterizations

If U and V are covers of a set X, the collection V is said to be a
refinement of the collection U if for every V € V there is some U € U
with V C U. If the collection V above is not required to cover X, we
say that V is a partial refinement of U.

A space X is called ideal weakly @-refinable (resp. ideal weakly 66-
refinable) if for every moc ideal U there exists a sequence {V,, : n € w}
of open partial refinements of U such that for each z € X there is
n € w with 0 < ord(z,V,) < w (resp. n € w with 0 < ord(z,V,) < w).
Clearly, every ideal weakly f-refinable space is ideal weakly §0-refinable.
We give some characterizations of ideal weak §6-refinability with the
interlacing terminology introduced by Arhangelskii ([1}).

THEOREM 3.1. A space X is ideal weakly 66-refinable if and only if

for every moc ideal U of X there exists a point-countable interlacing V
such that | JV refines U.

Proof. (=) Suppose that X is ideal weakly é6-refinable. Let U be
a moc ideal of X. Then there exists a weak d6-refinement V of U, i.e.,
there exists a sequence V = {V,, : n € w} of open partial refinements of
U such that for each x € X, there exists n € w with 0 < ord(z,V,) < w.
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For each n € w, let
Xp,={z€ UVn :n=min{k:z € UVkandO <ord(z,Vi) <w}}.

and let V;, = {V N X, :V € V,}. Then for each n-€ w and V' € V.,
Vi=VnX,=VnUV, for some V € V,. Also JUV!, = X since
for every z € X there exists n € w such that 0 < ord(z,V,) < w. So
V"= {V, : n € w} is an interlacing and it is clearly point-countable,
and (JV’ refines U.

(<) Suppose the condition holds. Let ¢/ be a moc ideal of X. Then
by assumption there exists a point-countable interlacing V = {Vn:ne
w} whose union refines . For each n € w and V € V, choose an open
set V' in X such that V' C U for some U € U and V = V' n (V).
Let V, ={V':V € V,} for all n € w. Then {V., : n € w} is a sequence
of open partial refinements of &. Moreover, if € X, then there exists
n € w with z € (JV, because V is an interlacing. Consequently, z €
UV, and 0 < ord(z,V),) < w since V is point-countable. Therefore X
is ideal weakly é6-refinable. O

THEOREM 3.2. A space X is ideal weakly 66-refinable if and only
if for every closed ultrafilter F on X there exists a point-countable
interlacing V which is §-suspended from F.

Proof. 1t follows directly from definitions of open ideals and closed
ultrafilters. O
COROLLARY 3.3. Every ideal weakly &0-refinable (or even ideal

weakly 0-refinable) space is pure.

Now we consider some of basic properties of ideal weakly §0-refinable
spaces which will be in the class of spaces having the isocompactness

property.

PROPOSITION 3.4. Every countably compact ideal weakly 66-refin-
able space is compact.
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Proof. Let X be a countably compact ideal weakly d6-refinable space.
Then it follows from Corollary 3.3 that X is pure. So by Theorem 2.7,
X is compact. a

We will show that ideal weak §0-refinability is hereditary with respect
to closed subsets.

PROPOSITION 3.5. Every closed subset of an ideal weakly 66-refin-
able space is ideal weakly 60-refinable.

Proof. Let X be an ideal weakly §9-refinable space and C' C X be
closed. To apply Theorem 3.2, let F be a closed ultrafilter on C' and
let H be a closed ultrafilter on X which contains F. Then by Theorem
3.2, there is a point-countable interlacing £’ = {S’ : n€whon X
which is é-suspended from H. So if we let £, = {ENC : E € &}
and £ = {€, : n € w}, then it is easy to see that £ is the required
interlacing. Thus, by Theorem 3.2, C is ideal weakly Jf-refinable. O

THEOREM 3.6. Every ideal weakly §0-refinable space is isocompact.
Proof. It follows from Proposition 3.4 and Proposition 3.5. O
Even though ideal weakly &6-refinable spaces and weakly star re-

ducible spaces are isocompact (see [6]), the author does not know
whether every ideal weakly d0-refinable space is weakly star reducible.

TuEOREM 3.7 (LEMMA 2.2 [4]). A space X is ideal weakly -
refinable if and only if for every moc ideal U of X there is an open
cover V which is a -penetration of U.

The following theorem is an analog of Theorem 3.7 for ideal weak
d6-refinability.

THEOREM 3.8. A space X is ideal weakly §0-refinable if and only
if for every moc ideal U of X there is an open cover V which is a
80-penétration of U.
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Proof. (=) Suppose that X is an ideal weakly é6-refinable space.
Let U be a moc ideal of X. Then there exists a partial refinement
{Vn : n € w} of Y such that for every z € X there exists n € w such
that 0 < ord(z,V,) <w. So V = |J{Vn : n € w} is a 66-penetration of
U.

(<) Suppose the condition holds. Let I/ be a moc ideal of X. With-
out loss of generality, we may assume that U is closed under count-
able unions; in fact, if not, then there exists a countable subcollection
{Gn : n € w} of U such that |, ¢, Gn ¢ U. By maximality of U with
X ¢ U, there exists a countable subcover {G, : n € w} of Y. Then
{{GL} : n € w} is a §0-refinement of U.

Now let V = |J{V» : n € w} be a 6f-penetration of U. For each
n € w, we define

X,={zxeX:0<ord(z,V,) <wandV € Ufor someV € V,(x)}.
Also, for each z € X, we define
f(x)={new:0<ord(z,V,) < w}.

We claim that X = |J,,c,, Xn. Suppose for the contradiction that
that there is a y € X with y ¢ U,c, Xn. Let G = {(n,V) : n €
f(y)andV € V,(y)}. Then for each pair (n,V) € G, we have 0 <
ord(z,Vy,) <w,V € Vu(y), and y ¢ X,,. Thus V ¢ U. Hence there is
a G(n,V) € U such that VJG(n,V) = X, ie, X\V C G(n,V). Now
since U is closed under countable unions, we have

U UG, V) :V e Valy)} e U

nef(y)
Since N{I(y,Vn) : n € f(y)} C U for some U € U by §6-penetrability,
we have
X =[X\[{I(y,Vn) :n€ f(yJUU
= J{X\I(y, V) i n € f(y)} UU
= U UX\V:Vvenyruu

nef(y)

c U Ulem,v):vevayul.

ne f(y)
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This gives us that the union of two elements of I/ equals to X. So we
have a contradiction because U is an ideal. This proves our claim.
Now for all n € w and = € X,, there exists a V(z,n) € V,(z) with
V(z,n) € U. For each n € w, let V), = {V(z,n) : z € X,} and let
V' ={V] : n € w}. Finally, we claim that V' is a weak §6-refinement of
U. Let z € X. Then x € X, for some n € w. Then z € V(z,n) € V!
and |V} (z)| < |[Vn(z)] < w. This completes the proof. O

Throughout the rest of this section, we consider the behavior under
mappings of ideal weakly d6-refinable properties.

THEOREM 3.9. Let f : X — Y be a continuous mapping from a
space X onto an ideal weakly 66-refinable space Y. Then every closed
inverse image under f is ideal weakly §0-refinable in X if and only if
each fiber f~1(y) is ideal weakly 60-refinable.

Proof. (=) It is clear.

(<) We will apply Theorem 3.2 in this proof. To do this, let F be
a free closed ultrafilter on X. Then F# = {f(F) : F € F} is a closed
ultrafilter on Y. There are two possible cases as follows:

If 7# is fixed, then there exist y € Y and F’/ € F with NF#* = {y}
and F' = f~1({y}). So Fp = {FNF' : F € F} is a free closed
ultrafilter on F’. Thus there exists a point-countable interlacing V' =
{Vn : n € w\{0}} which is é-suspended from Fr .. Let Vo = {X\F'}.
Then V = {V,, : n € w} is a point-countable interlacing which is 4-
suspended from F.

If F# is free, then there is a point-countable interlacing W = {W,, :
n € w} which is §-suspended from Fp.. For each n € w, let Z, =
{f~YW): W € W,}. Then Z = {2, : n € w} is the required point-
countable interlacing d-suspended from F. We need only check the
d-suspension condition. Let n € w and z € U 2Z.. Then there exists a
countable H# C F# with st(f(z), Wa)N(\H#) = 0. IfH = {f~1(H) :
H € H#}, then st(z, Z,) N (H) = f-1(st(f(z), Wa)) N /(1) =
o) =0. a

COROLLARY 3.10. The perfect inverse image of an ideal weakly 56-
refinable space is ideal weakly 60-refinable.
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COROLLARY 3.11. The topological sum of ideal weakly d0-refinable
spaces is ideal weakly 88-refinable.

Proof. Let X = @,.; X;, where I has the discrete topology. Then
I is an ideal weakly §f-refinable space. Let f : X — I be defined
by f(z) =i if € X;. Then f is a closed continuous surjective map
with ideal weakly d6-refinable fibers and thus X is ideal weakly §6-
refinable. a

4. Products

Tychonoff’s theorem says that the product of compact spaces is com-
pact. Unlike compactness, most covering properties are not productive,
for example, the product space of paracompact spaces need not be para-
compact. So we are interested in finding the conditions which make it
possible for a product of topological spaces to inherit a special property
from its factor spaces.

THEOREM 4.1. The product of weakly 80-refinable spaces is ideal
weakly §0-refinable.

Proof. Let X = [],c 4 Xa be the product space of weakly 66-refinable
spaces X, for each a € A, and let 7, : X — X, be the o-th projection
map for each a € A, and let F be a free closed ultrafilter on X. Then
it is well known that there is a 3 € A such that

Fs={F C Xp: Fisclosed in Xp and m;'(F) € F}
is a free prime filter on X3. Let £ be a point-countable interlac-
ing on X3 which is d-suspended from Fg. Such an interlacing ex-
ists because weak &6-refinablity implies astral. For each n € w, let
En = {w;l(E) : B € Epn}. We claim that £ = {€, :n € w} is a
point-countable interlacing on X which is d-suspended from F. Con-
tinuity of the projection map gives that £ is an interlacing and the
point-countable condition is clear. It remains to check that the 4-
suspended condition. If wEl(Eﬁ) € &, then there exists Fg € Fg
with Fjs N Eg = 0, and so 7' (F3) N 75" (Eg) = 0. By the definition of
Fs, we get wEI(Fﬁ) € F, so £ is d-suspended from F. a
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THEOREM 4.2. Let X be an ideal weakly 60-refinable space and Y
be a compact space. Then the product space X x Y is ideal weakly
86-refinable.

Proof. Let X and Y be such spaces. Then the projection map wx :
X xY — X is perfect since Y is compact. Thus by Corollary 3.10,
X x Y is ideal weakly d0-refinable. O

In the rest of this paper, we consider products of ideal type properties
with Borel complete spaces. Recall that a space X.is called Borel
complete if each ultrafilter of Borel sets with c.i.p. is fixed.

LEMMA 4.3 [11]. Let H be a free closed ultrafilter on X with c.i.p.
If B is a Borel set of X, and if B contains no member of H, then there
is an H € H such that HN B = (.

LEMMA 4.4. Let f : X — Y be continuous, ‘H be a free closed
ultrafilter on X with c.i.p. Then

B={BCY:B isaBorel set and H C f~*(B) for someH € H}

is a Borel ultrafilter on Y with c.i.p.

Proof. Clearly B has the c.i.p. Let B C Y be a Borel set and BNB’ #
@ for each B’ € B. If B ¢ B, then f~(B) contains no member of #,
and f~1(B) is a Borel set because f is continuous and B is a Borel set.
So by Lemma 4.3 there exists H € H such that HN f~1(B) = . Then
f~YY\B) 2 H. So Y\B € B and thus BN (Y\B) # 0, which is a
contradiction. This proves that B is an ultrafilter. So the conclusion
follows. O

THEOREM 4.5. The product of a Borel complete space X and an
ideal weakly 60-refinable space Y is ideal weakly §6-refinable.

Proof. Let mx : X x Y — X be the projection map and H be a free
closed ultrafilter on X x Y. Without loss of generality we may assume
that # has c.i.p. Let

B={BC X:B is a Borel set and H C 73" (B) for some H € H}.
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Then by Lemma 4.4, B is a Borel ultrafilter with c.i.p. on X. Therefore
B is fixed, i.e., B # 0, and so we have that 73! (" B) € H. Since it
is in the form of {z} x Y, it is ideal weakly d6-refinable; {z} x Y is
a closed subspace of X x Y and an element of H. Consequently, the

proof follows from Theorem 3.9. a
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