ON PROJECTIVELY FLAT FINSLER SPACES WITH $({\alpha},{\beta})$-METRIC

  • Published : 1999.04.01

Abstract

The ($\alpha$,$\beta$)-metric is a Finsler metric which is constructed from a Riemannian metric $\alpha$ and a differential 1-from $\beta$;it has been sometimes treated in theoretical physics. The condition for a Finsler space with an ($\alpha$,$\beta$)-metric L($\alpha$,$\beta$) to be projectively flat was given by Matsumoto [11]. The present paper is devoted to studying the condition for a Finsler space with L=$\alpha$\ulcorner$\beta$\ulcorner or L=$\alpha$+$\beta$\ulcorner/$\alpha$ to be projectively flat on the basis of Matsumoto`s results.

Keywords

References

  1. The Theory of Sparays and Finsler spaces with Applications in Physics and Biology P. L. Anotonelli;R. S. Ingarden;M. Matsumoto
  2. Ann. of Math. v.48 no.3 Ueber Finslersche und Cartansche geometric IV, Projecktiv Krummung allegemeiner affiner Raume und Finslerscher Raume skalarer Krummung L. Berwald
  3. preprint INP MSU, 91-15/219 From the Weyl theory to a Theory of locally anisotropic space-time G. Yu. Bogoslovsky
  4. Rep. Fac. Sci. Kagoshima Univ.,(Math., Phys., chem.) v.13 Randers spaces with rectilinear geodesic M. Hashiguchi;Y. Ichijyo
  5. Tensor, N. S. v.57 Landsberg spaces of dimension two with (α,β)-metric M. Hashiguchi;S. Hojo;M. Matsumoto
  6. Symp. on Finsler Geom. Finsler metric L² = 2αβ S. Hojo
  7. Tensor, N. S. v.33 On the condition that a space with (α,β)-metric be locally Minkowskian S. Kikuchi
  8. On the Finsler geometry of non-equilibrium thermodynamics R. S. Ingarden
  9. Tensor, N. S. v.34 Projective changes of Finsler metrics and projectively flat Finsler spaces M. Matsumoto
  10. Foundation of Finsler geometry and special Finsler spaces
  11. Rep. Math. Phys. v.30 Projectively flat Finsler spaces with (α,β)-metric
  12. Tensor, N. S. v.50 The Berwald connection of a Finsler space with an (α,β)-metric
  13. Tensor, N. S. v.24 On a C-reducible Finsler space
  14. J. Hokkaido Univ. of Education, ⅡA v.35 On Finsler spaces with an (α,β)-metric C. Shibata