Aspergillus ochraceus와 다른 저장균간의 in vitro 상호작용 및 Niche Overlap에 미치는 환경요인의 영향

Impact of Environmental Factors on in vitro Interactions and Niche Overlap between Aspergillus ochraceus and other Storage Fungi

  • 이향범 (충남대학교 농과대학 응용생물화학부) ;
  • ;
  • 유승헌 (충남대학교 농과대학 응용생물화학부)
  • Lee, Hyang-Burm (Division of Applied Biology and Chemistry, College of Agriculture, Chungnam National University) ;
  • Magan, Naresh (Applied Mycology Group, Biotechnology Centre, Cranfield University) ;
  • Yu, Seung-Hun (Division of Applied Biology and Chemistry, College of Agriculture, Chungnam National University)
  • 발행 : 1999.08.30

초록

옥수수에서 분리한 ochratoxin생성균인 Aspergillus ochraceus와 다른 균류 6종과의 in vitro 생장 및 상호작용에 미치는 수분활성도(water activity; $a_w$)와 온도의 영향을 조사하였다. A. ochraceus를 6종의 균류와 각각 대치 배양한 후 그들의 상호작용에 수리점수(numerical score)를 주어 각 종의 우점지수($I_D$)를 구하였다. 일반적으로 A. ochraceus는 다른 종에 대하여 매우 경쟁력이 있는 우점종이었다. 그러나 높은 $a_w(0.995\;a_w)$에서는 Alternaria alternata와 A. niger에게 우점당하였으며, 낮은 $a_w(0.9\;a_w)$에서는 Eurotium amstelodami와 E. rubrum과 상호 길항 관계를 보였다. 공시균들의 생장율에 미치는 $a_w$와 온도의 영향을 조사하였던 바 $a_w$와 온도에 따라 생장율은 많은 차이가 있었다. 높은 온도($30^{\circ}C$)에서 A. ochraceus는 $0.95\;a_w$에서 가장 생장이 빠른 반면에 A. flavus, A. niger 및 A. niger 및 A. alternata는 $0.995\;a_w$에서 가장 빠른 생장을 보였다. 낮은 온도($18{\sim}25^{\circ}C$) 높은 $a_w(0.995\;a_w)$에서는 A. alternata가 가장 생장이 빨랐으며 A. candidus, E. amstelodami 및 E. rubrum은 생장이 매우 느렸다. Biolog plates를 이용하여 옥수수 유래의 탄소원 이용패턴에 미치는 $a_w$와 온도의 영향을 조사하였다. A. ochraceus의 niche중복지수(NOI)를 구하였고 각각의 상호작용 균들의 NOI와 비교하였다. 높은 $a_w(0.995\;a_w)$에서는 A. ochraceus의 NOI 값이 보통 0.9 이상으로서 다른 종들과의 공존을 나타내었다 그러나 $18^{\circ}C$에서 E. amstelodami와 E. rubrum과 비교할 때는 A. ochraceus의 NOI 값이 0.8이하로서 별도의 niche를 점유하고 있는 것으로 나타났다. 또한 낮은 $a_w(0.95\;a_w)$에서 A. alternata 및 A. niger와 비교할 경우 A. ochraceus의 NOI 값이 0.8 이하로서 역시 서로 다른 niche를 점유하고 있는 것으로 나타났다.

The effect of water activity ($a_w,\;0.9{\sim}0.995$) and temperature ($18{\sim}30^{\circ}$C) on in vitro growth and interactions between ochratoxin-producing Aspergillus ochraceus and six other fungi (Alternaria alternata, Aspergillus candidus, A. flavus, A. niger, Eurotium amstelodami, E. rubrum) isolated from maize grain were investigated. A. ochraceus and each six other species were paired and their interactions given a numerical score to obtain an index of dominance ($I_D$) for each species. Generally A. ochraceus was very competitive and dominant against other fungi. It was, however, dominanted by Alternaria alternata and A. niger at high $a_w\;(0.995\;a_w)$, and mutually antagonistic when paired with E. amstelodami and E. rubrum at low $a_w\;(0.9\;a_w)$. The growth rates of each species were also calculated under the same range of environmental conditions. They were markedly influenced by aw and temperature. At high temperature ($30^{\circ}C$), A. ochraceus grew most rapidly under slightly drier conditions ($0.95\;a_w$), while A. alternata, A. flavus and A. niger did at high water availability level ($0.995\;a_w$). At $18^{\circ}C\;and\;25^{\circ}C$, and high $a_w$ level ($0.995\;a_w$), A. alternata grew fastest, while A. candidus, E. amstelodami and E. rubrum grew very slowly. Using Biolog plates the effect of $a_w$ and temperature on utilization patterns of carbon sources in maize was evaluated. The niche overlap index (NOI) relative to A. ochraceus was determined and compared with that of each interacting species. Under high water available condition ($0.995\;a_w$). the NOI of A. ochraceus was often >0.9, indicative of the coexistence with other interacting species. However, against E. amstelodami and E. rubrum at $18^{\circ}C$, the species had NOI <0.8, indicative of occupation of different niches. At low $a_w\;(0.95\;a_w)$, NOI for A. ochraceus was <0.8 when paired with A. alternata and A. niger also suggested the occupation of different niches.

키워드

참고문헌

  1. Appl. Environm. Microbiol. v.56 Effects of temperature and incubation period on production of fumonisin $B_1$, by Fusarium moniliforme Alberts, J.F.;Gelderblom, W.C.A.;Thiel, P.G.;Marasas, W.F.O.;van Schalkwyk, D.J.;Behrend, Y.
  2. Cereal Foods World v.26 Microbial stability as affected by water activity Beuchat, L.R.
  3. Lett. Appl. Microbiol. v.20 Growth of Fusarium moniliforme and its biosynthesis of fumonisin B1 on maize grain as a function of different water activities Cahagnier, B.;Melcion, D.;Ricgard-Molard, D.
  4. Cereal Chem. v.28 Fungi on and in wheat seed Christensen, C.M.
  5. Cereal Chem. v.39 Invasion of stored wheat by Aspergillus ochraceus Christensen, C.M.
  6. Appl. Environm. Microbiol. v.53 Stimulation by Hyphopichia burtoruii and Bacillus amyloliquefaciens of aflatoxin production by Aspergillus flavus in irradiated maize and rice grain Cuero, R.;Smith, J.E.;Lacey, J.
  7. Trans. Brit. Mycol. Soc. v.73 Water relations of some Penicillium spp. at $25^{\circ}C$ Hocking, A.D.;Pitt, J.I.
  8. Acta Pathol. Microbiol. Immunol. Scan. Sect. A. Suppl. v.269 Causal associations of mycotoxic nephropathy Krogh, P.
  9. Fungi in cereal grains: their occurrence and water and temperature relationships;Cereal Grain. Mycotoxins, Fungi and Quality in Drying and Storage Lacey, J.;Magan, N.;Chelkowski, J.(ed.)
  10. Grain fungi;Handbook of Applied Mycology: Foods and Feeds Lacey, J.;Ramakrishna, N.;Hamer, A.;Magan, N.;Marfleet, I.C.;Arora, D.K.(ed.);Mukaj, K.G.(ed.);Marth, E.H.(ed.)
  11. J. AOAC Intern. v.77 Biotic and abiotic factors in fumonisin $B_1$ production and stability Le Bars, J.;Le Bars, P.;Dupuy, J.;Boudra, H.;Cassini, R.
  12. Trans. Brit. Mycol. Soc. v.82 Effect of water activity, tempereture and substrate on interactions between field and storage fungi Magan, N.;Lacey, J.
  13. Trans. Brit. Mycol. Soc. v.85 Interactions between field and storage fungi on wheat grain Magan, N.;Lacey, J.
  14. Intern. J. Food Microbiol. v.7 Ecological determinants of mould growth in stored grain Magan, N.;Lacey, J.
  15. Can. J. Food Microbiol. v.41 Water activity, temperature and pH effects on growth of Fusarium moniliforme and Fusarium proliferatum isolates from maize Marin, S.;Sanchis, V.;Magan, N.
  16. Mycol. Res. v.102 Environmental factors, in vitro interspecific interactions, and niche overlap between Fusarium moniliforme, F. proliferatum and F. graminearum, Aspergillus and Penicillium species isolated from maize grain Marin, S.;Sanchis, V.;Ramos, A.J.;Vinas, I.;Magan, N.
  17. Can. J. Microbiol. v.42 Water and temperature relations and microconidial germination of Fusarium moniliforme and Fusarium proliferatum from maize Marin, S.;Sanchis, V.;Teixido, A.;Saenz, R.;Ramos, A.J.;Vinas, I.;Magan, N.
  18. Lett. Appl. Microbiol. v.21 Effect of water activity and temperature on fumonisin $B_1\;and\;B_2$ production on maize grain Marin, S.;Sanchis, V.;Vinas, I.;Canela, R.;Magan, N.
  19. Mycol. Res. v.97 Effects of water activity and temperature on the growth of fungi interacting on barley grain Ramakrishna, N.;Lacey, J.;Smith, E.
  20. J. Appl. Bacteriol. v.74 Interactions among xerophilic fungi associated with dried salted fish Wheeler, K.A.;Hocking, A.D.
  21. EPPO Bulletin v.17 Effect of nutrient status and water potential of media on fungal growth and antagonist-pathogen interactions Whipps, J.M.;Magan, N.
  22. Phytopathology v.70 Interference competition and aflatoxin levels in corn Wicklow, D.T.;Hesseltine, C.W.;Shotwell, O.L.;Adams, G.L.
  23. Phytopathology v.78 Fungal interference with Aspergillus flavus infection and aflatoxin contamination of maize grown in a controlled environment Wicklow, D.T.;Horn, B.W.;Shorwell, O.L.;Hesseltine, C.W.;Caldwell, R.W.
  24. Appl. Environm. Microbiol. v.60 Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning Wilson, M.;Lindow, S.E.
  25. Appl. Environm. Microbiol. v.60 Ecological similarity and coexistence of epiphytic ice-nucleating $(Ice^+)$ Pseudomonas syringae strains and a non-ice-nucleating $(Ice_-)$ biological control agent Wilson, M.;Lindow, S.E.