A fast adaptive numerical solver for nonseparable elliptic partial differential equations

  • 발행 : 1998.06.30

초록

We describe a fast numerical method for non-separable elliptic equations in self-adjoin form on irregular adaptive domains. One of the most successful results in numerical PDE is developing rapid elliptic solvers for separable EPDEs, for example, Fourier transformation methods for Poisson problem on a square, however, it is known that there is no rapid elliptic solvers capable of solving a general nonseparable problems. It is the purpose of this paper to present an iterative solver for linear EPDEs in self-adjoint form. The scheme discussed in this paper solves a given non-separable equation using a sequence of solutions of Poisson equations, therefore, the most important key for such a method is having a good Poison solver. High performance is achieved by using a fast high-order adaptive Poisson solver which requires only about 500 floating point operations per gridpoint in order to obtain machine precision for both the computed solution and its partial derivatives. A few numerical examples have been presented.

키워드