Abstract
The Westinghouse OT$\Delta$T DNB protection logic heavily restricts the operation region by applying the same logic for a full range of operating pressure in order to maintain its simplicity. In this work, a fuzzy neural network method is used to estimate the DNB protection limit using the measured average temperature and pressure of a reactor core. Fuzzy system parameters are optimized by a hybrid learning method. This algorithm uses a gradient descent algorithm to optimize the antecedent parameters and a least-squares algorithm to solve the consequent parameters. The proposed method is applied to Yonggwang 3&4 nuclear power plants and the proposed method has 5.99 percent larger thermal margin than the conventional OT$\Delta$T trip logic. This simple algorithm provides a good information for the nuclear power plant operation and diagnosis by estimating the DNB protection limit each time step.