A Bayesian Method for Narrowing the Scope of Variable Selection in Binary Response Logistic Regression

  • 발행 : 1998.03.01

초록

This article is concerned with the selection of subsets of predictor variables to be included in bulding the binary response logistic regression model. It is based on a Bayesian aproach, intended to propose and develop a procedure that uses probabilistic considerations for selecting promising subsets. This procedure reformulates the logistic regression setup in a hierarchical normal mixture model by introducing a set of hyperparameters that will be used to identify subset choices. It is done by use of the fact that cdf of logistic distribution is a, pp.oximately equivalent to that of $t_{(8)}$/.634 distribution. The a, pp.opriate posterior probability of each subset of predictor variables is obtained by the Gibbs sampler, which samples indirectly from the multinomial posterior distribution on the set of possible subset choices. Thus, in this procedure, the most promising subset of predictors can be identified as that with highest posterior probability. To highlight the merit of this procedure a couple of illustrative numerical examples are given.

키워드