중복근을 갖는 비비례 감쇠시스템의 고유치 해석

Solution of Eigenvalue Problems for Nonclassically Damped Systems with Multiple Frequencies

  • 김만철 (한국과학기술원 토목공학과) ;
  • 정형조 (한국과학기술원 토목공학과) ;
  • 오주원 (한남대학교 토목공하과) ;
  • 이인원 (한국과학기술원 토목공학과)
  • 발행 : 1998.03.01

초록

본 논문에서는 중복근을 갖는 비비례 감쇠시스템의 고유치 해석 방법을 제안하였다. 2차 고유치 문제의 행렬 조합을 통한 선형 방정식에 수정된 Newton-Raphson기법과 고유벡터의 직교성을 적용하여 제안방법의 알고리즘을 유도하였다. 벡터 반복법 또는 부분공간 반복법과 같은 기존의 반복법에서는 수렴성을 향상시키기 위해 변위법을 적용하였으며, 이 값이 시스템의 고유치에 근사하게 되면 행렬분해 과정에서 특이성이 발생한다. 그러나 제안방법은 구하고자 하는 고유치가 중복근이 아닐 경우에, 변위값이 시스템의 고유치 일지라도 항상 정칙성을 유지하며, 이것을 해석적으로 증명하였다. 제안방법은 수정된 Newton-Raphson기법을 이용하기 때문에 초기값을 필요로 한다. 제안방법의 초기값으로는 반복법의 중간결과나 근사법의 결과를 사용할 수 있다. 이들 방법중 Lanczon방법이 가장 효율적으로 좋은 초기값을 제공하기 때문에 Lanczon방법의 결과를 제안방법의 초기값으로 사용하였다. 제안방법의 효율성을 증명하기 위하여 두가지 예제 구조물에 대해 해석시간 및 수렴성을 가장 많이 사용하고 있는 부분공간 반복법과 Lanczon방법의 결과와 비교하였다.

A solution method is presented to solve the eigenvalue problem arising in the dynamic analysis of nonclassicary damped structural systems with multiple eigenvalues. The proposed method is obtained by applying the modified Newton-Raphson technique and the orthonormal condition of the eigenvectors to the linear eigenproblem through matrix augmentation of the quadratic eigenvalue problem. In the iteration methods such as the inverse iteration method and the subspace iteration method, singularity may be occurred during the factorizing process when the shift value is close to an eigenvalue of the system. However, even though the shift value is an eigenvalue of the system, the proposed method provides nonsingularity, and that is analytically proved. Since the modified Newton-Raphson technique is adopted to the proposed method, initial values are need. Because the Lanczos method effectively produces better initial values than other methods, the results of the Lanczos method are taken as the initial values of the proposed method. Two numerical examples are presented to demonstrate the effectiveness of the proposed method and the results are compared with those of the well-known subspace iteration method and the Lanczos method.

키워드

참고문헌

  1. Trans. ASME, J. of Appl. Mech. v.32 Classical normal modes in damped linear dynamic systems T. K. Caughey;M. E. J. O'Kelly
  2. SIAM J. of Numer. Anal. v.10 An algorithm for generalized matrix eigenvalue problems C. B. Moler;G. W. Stewart
  3. SIAM J. of Numer. Anal. v.11 LZ algorithm to solve the generalized eigenvalue problem LL. Kaufman
  4. Comput. Meth. appl. Mech. Engng. v.38 A global Jocobi method for a symmetric indefinite problem Sх=λTх L. Veselic
  5. J. Sound Vibr. v.67 no.1 Response of slightly damped gyroscopic systems Meirovitch;G. Ryland, Ⅱ
  6. Comput. Struct. v.36 no.1 Eigenvalue and eigenvector determination for nonclassically damped dynamic systems D. L. Cronin
  7. J. Sound Vibr. v.160 no.2 Perturbation method for the eigenvalue problem of lightly damped systems M. K. Kwak
  8. Comput. Struct. v.57 no.5 Computation of eigenvalues and eigenvectors of nonclassically damped systems S. S. Peres-Da-Silva;D. L. Cronin;T. W. Randolph
  9. J. Sound Vibr. v.187 no.4 Perturbation method for determining eigensolutions of weakly damped systems J. Tang;W. L. Wang
  10. Int. J. Numer. Meth. Engng. v.8 Eigenproblem solution of damped structural systems K. K. Gupta
  11. Int. J. Numer. Meth. Engng. v.17 Development of a unified numerical procedure for free vibration analysis of structures K. K. Gupta
  12. Comput. Struct. v.19 Computation of eigenpairs of Aх=λBх for vibrations of spinning deformable bodies S. Utku;J. L. M. Clemente
  13. Report No. UCB/SEMM-86/10 Properties and solutions of the eigensystem of non-proportionally damped linear dynamic systems H. C. Chen;R. L. Taylor
  14. J. Sound Vibr. v.184 no.4 Subspace iteration method for complex symmetric eigenproblems A. Y. T. Leung
  15. J. Res. Nat. Bureau of Standards v.45 An iteration method for the solution of the eigenvalue problem of linear differential and integral operators C. Lanczos
  16. Ph. D. Thesis, Univ. of London The computation of eigenvalues and eigenvectors of very large sparse matrix C. C. Paige
  17. J. Inst. Math. Appl. v.10 Computational variants of the Lanczos method for the eigenproblem C. C. Paige
  18. J. Inst. Math. Appl. v.18 Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matrix C. C. Paige
  19. Math. Comput. v.33 The Lanczos algorithm with selective orthogonalization B. N. Parlett;D. S. Scott
  20. Math. Comput. v.42 The Lanczos algorithm with partial reorthogonalization H. D. Simon
  21. Math. Comput. v.44 A look-ahead Lanczos algorithm for unsymmetric matrices B. N. Parlett;D. R. Taylor;Z. A. Liu
  22. Int. J. Numer. Meth. Engng. v.26 Structural dynamics analysis using an unsymmetric block Lanczos algorithm H. M. Kim;R. R. Craig, Jr
  23. Int. J. Numer. Meth. Engng. v.32 The Lanczos algorithm applied to unsymmetric generalized eigenvalue problem C. Rajakumar;C. R. Rogers
  24. Int. J. Numer. Meth. Engng. v.105 Lanczos algorithm for the quadratic eigenvalue problem i engineering applications C. Rajakumar
  25. Comput. Struct. v.30 no.1;2 Solution of eigenproblems for damped structural systems by Lanczos algorithm H. C. Chen;R. L. Taylor
  26. Comput. Struct. v.53 no.5 Efficient vibration analysis of general structural systems H. C. Chen
  27. J. Sound Vibr. v.199 no.2 A reduction method for large scale unsymmetric eigenvalue problems in structural dynamics Z. C. Zheng;G. X. Ren;W. J. Wang
  28. ASCE, J. Engng. Mech. An efficient solution method of eigenproblems for damped structural systems using the modified Newton-Raphson technique I. W. Lee;M. C. Kim;A. R. Robinson
  29. Comput. Struct. v.63 no.1 Determination of the natural frequencies and mode shapes for large structures by accelerated Newton-Raphson method I. W. Lee;M. C. Kim;A. R. Robinson
  30. Comput. Struct. v.23 An accelerated subspace iteration method K. J. Bathe;S. Ramaswamy