SOD 구조 형성에 따른 다이아몬드 박막 형성

Formation of the Diamond Thin Film as the SOD Sturcture

  • 발행 : 1998.11.01

초록

CO와 $H_2$의 탄소원을 사용한 마이크로파 플라즈마 화학기상증착 방법으로 SOD 구조에 적용될 양질의 다이아몬드 박막을 형성하였고, SOD 구조를 형성하기 위해 diamond/Si(100) 구조 위에 poly-Si 박막을 저압화학기상 증착법으로 제작하였다. CO/$H_2$탄소원의 유량비 증가에 따라 다이아몬드의 결정은 octahedron 구조에서 cubo-octahedron 구조로 바뀌었으며, 결정면은 {111}과 {100}으로 혼합되어 형성되었다. 비정질 carbon과 non-diamond성분이 없는 양질의 다이아몬드 박막은 CO/$H_2$의 유량비가 0.18일 때 형성되었으며, 주 결정상은 (111) 면이었다. diamond/Si(100) 계면은 void가 없는 평활한 계면을 이루었으며, 다이아몬드 박막의 유전상수, 누설전류와 비저항은 각각 $5.31\times10^{-9}A/cm^2$ 그리고 $9\times{10^7}{\Omega}cm$이었다.

High quality diamond films of the silicon on diamond (SOD) structure are deposited using CO and $H_2$ gas mixture in microwave plasma chemical vapor deposition (CVD), a SOD structure is fabricated using low pressure CVD polysilicon on diamond/ Si(100) substrate. The crystalline structure of the diamond films which composed of { 111} and {100} planes. were changed from octahedral one to cubo-octahedron one as the CO/$H_2$ ratios are increased. The high quality diamond films without amorphous carbon and non-diamond elements were deposited at the CO/$H_2$ flow rate of 0.18. and the main phase of the diamond films shows (111) plane. The diamond/Si(lOO) structure shows that the interface is flat without voids. The measured dielectric constant. leakage current and breakdown field were $5.31\times10^{-9}A/cm^2$ and $9\times{10^7}{\Omega}cm$ respectively.

키워드

참고문헌

  1. The Properties of Diamond G.Davies
  2. Jpn. J. Appl. Phys. v.28 H.Shiomi;Y.Nishibayashi;N.Fujimori
  3. IEEE Trans. Electron Devices v.36 K.Shenai;R.S.Scott;B.J.Baliga
  4. Appl. Phys. Lett. v.56 M.I.Land strass;D.M.Fleetwood
  5. J. Cryst. Growth v.52 B.V.Spitsyn;L.L.Bouilov;B.V.Derjaguin
  6. Science v.241 J.C.Angus;C.C.Hayman
  7. Phys. Rev. v.B38 K.Kobashi;K.Nishimura;Y.Kawata;T.Horiuchi
  8. J. Vac. Sci. Technol. v.A4 R.Messier
  9. Appl. Phys. Lett. v.60 B.R.Stoner;J.T.Glass
  10. Diamond & Relat. Mater. v.2 X.Jiang;C.P.Klages
  11. Mater.Res. Soc. v.EA-15 P.O.Joffreau,R;Haubner;B.Lux
  12. Proc. of the 2nd International Conference on New Diamond Science and Technology T.Srivinyunon;R.Philips;C.Cutshaw;A.J.Joseph;Y.Tzeng
  13. Proc. of the 2nd International Conference on New Diamond Science and Technology G-H.M.Ma;Y.Hirose;S.Amanuma;M.McClure;J.T.Prater;J.T.Glass
  14. Appl. Phys. Lett. v.57 S.Koizumi;T.Murakami;T.Inuzuka;K.Suzuki
  15. J. Vac. Sci. Technol. v.A9 W.A.Yarbrough
  16. Mater. Res. Soc. Proc. v.162 N.Fujimori;T.Imai;H.Nakahata;H.Shiomi;Y.Nishinayashi
  17. Jpn. J. Appl. Phys. v.30 T.Tsuno;T.Imai;Y.Nishibayashi;k.Hamada;N.Fujimori
  18. Diamond & Relat. Mater. v.1 H.G.Maguire;H.Kamo;H.P.Lang;E.Meyer;K.Weissendanger;H.J.Guntherodt
  19. Appl. Phys. Lett. v.60 L.F.Sutcu;M.S.Thompson;C.J.Chu;R.H.Hauge;J.L.Margave;M.P.D'Evelyn
  20. Phys. Rev. v.B43 M.Frenklach;H.Wang
  21. Diamond & Relat. Mater. v.1 P.K.Backmann;D.Leers;H.Lydtin
  22. Vacuum v.6 N.Fujimori;T.Imai;A.Doi
  23. Proc. of the 1st International Diamond Syposium C.Wang;A.Hatta;J.H.Won;N.Jiang;T.Ito;T.Sasaki;A.Hiraki
  24. New Diamond Forum v.5 M.Kamo
  25. J. Mater. Res. v.5 K.V.Ravi;C.A.Koch;H.S.Hu;A.Joshi
  26. Proc. of the 1st International Diamond Syposium Z.Jin;C.Gu;Q.Meng;X.Lu;G.Zou;J.Lu;D.Yao;X.Su;Z.Xu
  27. Proc. of the 3rd International Syposium of 183rd Meeting of the Electrochem. Soc. v.93-17 A.Jauhiainen;S.Bengtsson;O.Engstrom;D.J.Pickrell;D.S.Hoover