Analysis of Millimeter Wave Microstrip Patch Antennal Using FDTD Method

시간영역 유한차분법을 이용한 밀리미터파대 마이크로스트립 패치 안테나 해석

  • Published : 1998.10.01

Abstract

This paper is to verify the availability of the finite difference time domain (FDTD) method for the analysis of millimeter wave microstrip patch antenna. Using this method, the size of the microstrip patch antenna resonating at 32.153 GHz is optimized and the input impedance, the voltage standing wave ratio and the radiation pattern are calculated. The resonance frequencies of the microstrip patch antenna are calculated by MOM and FDTD method and then compared with the measured results, showing the difference of 12.27% and 1.27% respectively. Also, the bandwidth of this Ka-band patch antenna is about 8% which is similar to the case of X-band.

밀리미터파대 마이크로스트립 패치 안테나 해석에 시간영역 유한차분법 (FDTD)의 적용 가능성올 입증하였다. 이 방법을 이용하여 32.153 GHz에서 공진하는 마이크로스트립 patch 안테나의 크기를 최척화하고, 입력 임피던스, 정재파비와 복사패턴올 계산하였다. MOM (method of moment)과 FDTD 방법에 의해 계산된 마이크 로스트립 패치 안테나의 공진 주파수를 측정값과 비교한 결과, 각각의 차이가 12.27 %와 1.23%이었다. 또한 이 Ka-밴드 패치 안테나의 대역폭은 X밴드에서와 같이 약 8%이었다.

Keywords

References

  1. IEEE Trans. Antennas and Propagation v.27 no.2 Theory and Experiment on Microstrip Antennas Y. T. LO;D. Solomon;W. F. Richards
  2. IEEE Trans. Antennas and Propagation v.29 no.1 Microstrip Antennas for Millimeter Waves M. A. Weiss
  3. IEEE Trans. Antennas and Propagation v.31 no.5 Considerations for Millimeter Wave Printed Antennas David M. Pozar
  4. IEEE Proceedings v.80 no.1 Millimeter Wave Antennas Felix K. Schwering
  5. Field Computation by Moment Methods Harrington, R. F.
  6. IEEE Trans. Microeave Theory and Technique v.33 no.10 Method of Moments as Applied to Electromagnetic Problem Ney, M. M.
  7. IEEE Trans. Antennas and Propagation v.29 no.1 Analysis of Microstrip Antennas Using Moment Methods Newman;E. H.;P. Tulyathan
  8. IEEE Trans. Antennas and Propagation v.AP-39 no.12 Millimeter-wave design of wide-band aperture-coupled stacked microstrip antennas Frederic Croq;David M. Pozar
  9. IEEE Trans. Antennas and Propagation v.AP-14 no.3 Numerical solution of initial boundary value problems involving Max well's equations in isotropic media K. S. Yee
  10. IEEE Trans. on Microwave Theory and Tech. v.MTT-38 no.7 Application of the three-dimensional finite difference time domain method to the analysis of planar microstrip circuits D. M. Sheen;S. M. Ali;M. D. Abouzahra;J. A. Kong
  11. IEEE Trans. on Microwave Theory and Tech. v.MTT-40 no.5 The in corporation of static field solutions into the finite difference time domain algorithm D. B. Shorthouse;R. Railton
  12. IEEE Trans. Antennas and Propagation v.AP-37 no.11 Analysis of microstrip patch antennas using finite difference time domain method A. Reineix;B. Jecko
  13. IEEE Trans. Antennas and Propagation v.AP-40 no.5 Accurate characterization of planar printed antennas using finite difference time domain method C. Wu;K. Wu;Z. Q. Bi;J. Litva
  14. Millimeter-wave microstrip and printed circuit antennas P. Bhartia;K. V. S. Rao;R. S. Tomar
  15. Microstrip antennas I. J. Bahl;P. Bhartia
  16. IEEE Trans. on Microwave Theory and Tech. v.MTT-23 no.6 Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations A. Taflove;M. E. Brodwin
  17. The Finite Difference Time Domain Method for Electromagnetics Karl S. Kunz;Raymond J. Luebbers
  18. IEEE Trans. on Electromagnetic Compatibility v.EMC-23 no.4 Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations G. Mur
  19. Commun. Pure Appl. Math v.4 Field Equivalence Theorems S. A. Schelkunoff
  20. Antenna Theory Analysis and Design C. A. Balanis
  21. IEEE Trans. Antennas and Propagation v.AP-39 no.4 A Finite-Difference Time-Domain Near Zone to Far Zone Transformation R. J. Luebbers;K. S. Kunz;Michael Schneider;Forrest Hunsberger