Optimal Test Function Petrov-Galerkin Method

최적시행함수 Petrov-Galerkin 방법

  • Sung-Uk Choi (School fo Civil and Urban Engrg., Yonei Univ.,)
  • 최성욱 (연세대학교 사회환경시시템 공학부)
  • Published : 1998.10.01

Abstract

Numerical analysis of convection-dominated transport problems are challenging because of dual characteristics of the governing equation. In the finite element method, a strategy is to modify the test function to weight more in the upwind direction. This is called as the Petrov-Galerkin method. In this paper, both N+1 and N+2 Petrov-Galerkin methods are applied to transport problems at high grid Peclet number. Frequency fitting algorithm is used to obtain optimal levels of N+2 upwinding, and the results are discussed. Also, a new Petrov-Galerkin method, named as "Optimal Test Function Petrov-Galerkin Method," is proposed in this paper. The test function of this numerical method changes its shape depending upon relative strength of the convection to the diffusion. A numerical experiment is carried out to demonstrate the performance of the proposed method.

수송방정식의 양면적은 특성으로 인하여 이송항이 지배적인 흐름에 있어서 수송방정식의 수채해석은 매우 난해하다. 특히 유한요소법을 사용하여 수치해석할 때, 상류방향으로 더 많은 가중치를 두기 위하여 변화된 시행함수를 사용한다. 이러한 방법을 Petrov-Galerkin 방법이라고 한다. 본 논문에서는 N+1 과 N+2 Petrov-Galerkin 방법을 격자 Peclet 수가 큰 수송문제에 적용하였다. 주파수맞춤 기법을 사용하여 N+2 Petrov- Galerkin 방법을 격자 Peclet 수가 큰 소송문제에 적용하였다. 주파수맞춤 기법을 사용하여 N+2 Petrov-Galerkin 방법의 적정 풍상정도를 찾아내었고, 그 결과를 토의하였다. 이 기법의 시행함수는 이송항과 확산항의 상대적 크기에 따라 그 모양이 변화된다. 수치실험을 통하여 제시된 새로운 수치해석기법의 우수성을 설명하였다.

Keywords

References

  1. Computational fluid mechanics and heat transfer Anderson, D.A.;Tannehill, J.C.;Pletcher, R.H.
  2. Computer Methods in Applied Mechanics and Engineering v.92 An improved cubic Petrov-Galerkin method for simulation of transient advection-diffusion processes in rectangularly decomposable domains Bouloutas, E.T.;Celia, M.A.
  3. Computer Methods in Applied Mechanics and Engineering v.32 Streamline Upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations Brooks, A.N.;Hughes, T.J.R.
  4. Computational Methods in Water Resources X A Fourier analysis and dynamic optimization of the Petrov-Galerkin finite element method Carrano, C.S.;Yeh, G.-T.;Peters, A.(ed.);Wittum, G.(ed.);Herrling, B.(ed.);Meissner, U.(ed.);Brebbia, C.A.(ed.);Gray, W.G.(ed.);Pinder, G.F.(ed.)
  5. Numerical Methods for Partial Differential Equations v.5 A new numerical approach for the advective-diffusive transport equation Celia, M.A.;Herrera, I.;Bouloutas, E.;Kindred, J.S.
  6. International Journal for Numerical Methods in Engineering v.10 Finite element methods for second order differential equations with significant first derivatives Christie, I.;Griffiths, D.F.;Mitchell, A.R.;Zienkiewicz, O.C.
  7. International Journal for Numerical Methods in Engineering v.23 Accurate Petrov-Galerkin methods for the time dependent convective transport equation Dick, E.
  8. International Journal for Numerical Methods in Engineering v.11 An upwind finite element scheme for two dimensional convective transport equation Heinrich, J.C.;Huyarkorn, P.S.
  9. Computational Methods in Water Resources Ⅸ, Vol.Ⅰ:Numerical Methods in Water Resources A Petrov-Galerkin method for resolving advective-dominated transport Miller, C.T.;Cornew, F.H.;Russel, T.F.(ed.);Ewing, R.E.(ed.);Brebbia, C.A.(ed.);Gray, W.G.(ed.);Pinder, G.F.(ed.)
  10. Finite element simulation in surface and subsurface hydrology Pinder, G.F.;Gray, W.G.
  11. Computer Methods in Applied Mechanics and Engineering v.59 Petrov-Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: Applications to transient convection-diffusion problems Tezduyar, T.E.;Ganjoo, D.K.
  12. International Journal for Methods in Engineering v.28 Consistent higher degree Petrov-Galerkin methods for the solution of the transient convection diffusion equation Westerink, J.J.;Shea, D.