Abstract
Numerical analysis of convection-dominated transport problems are challenging because of dual characteristics of the governing equation. In the finite element method, a strategy is to modify the test function to weight more in the upwind direction. This is called as the Petrov-Galerkin method. In this paper, both N+1 and N+2 Petrov-Galerkin methods are applied to transport problems at high grid Peclet number. Frequency fitting algorithm is used to obtain optimal levels of N+2 upwinding, and the results are discussed. Also, a new Petrov-Galerkin method, named as "Optimal Test Function Petrov-Galerkin Method," is proposed in this paper. The test function of this numerical method changes its shape depending upon relative strength of the convection to the diffusion. A numerical experiment is carried out to demonstrate the performance of the proposed method.
수송방정식의 양면적은 특성으로 인하여 이송항이 지배적인 흐름에 있어서 수송방정식의 수채해석은 매우 난해하다. 특히 유한요소법을 사용하여 수치해석할 때, 상류방향으로 더 많은 가중치를 두기 위하여 변화된 시행함수를 사용한다. 이러한 방법을 Petrov-Galerkin 방법이라고 한다. 본 논문에서는 N+1 과 N+2 Petrov-Galerkin 방법을 격자 Peclet 수가 큰 수송문제에 적용하였다. 주파수맞춤 기법을 사용하여 N+2 Petrov- Galerkin 방법을 격자 Peclet 수가 큰 소송문제에 적용하였다. 주파수맞춤 기법을 사용하여 N+2 Petrov-Galerkin 방법의 적정 풍상정도를 찾아내었고, 그 결과를 토의하였다. 이 기법의 시행함수는 이송항과 확산항의 상대적 크기에 따라 그 모양이 변화된다. 수치실험을 통하여 제시된 새로운 수치해석기법의 우수성을 설명하였다.