초록
본 연구는 수력발전을 위한 저수지 관리에 있어 예측오차의 영향을 살펴보기 위해 예측오차를 Root Mean Square Error(RMSE)로 측정하였고, 이를 Generalized Maintenance Of Variance Extension (GMOVE)기법을 통하여 변화시켜보았다.변화된 예측오차의 RMSE는 천이확률을 통하여 Bayesian Stochastic Dynamic Programming (BSDP)에 고려되어졌으며, 이 BSDP 모형을 이용하여 월별 방류량을 결정하였고 그 유용성을 평가하였다. 제시된 연구방법은 미국의 Skagit 시스템에 적용되었고, 그 결과로 Skagit 시스템의 운영은 예측오차의 RMSE에 비선형이므로 반응하므로 이 시스템의 운영을 개선하기 위해서는 현재의 수문학적 예측기법을 개선해야함을 제시하였다.
This paper investigates the impact of the forecast error on performance of a reservoir system for hydropower production. Forecast error is measured as th Root Mean Square Error (RMSE) and parametrically varied within a Generalized Maintenance Of Variance Extension (GMOVE) procedure. A set of transition probabilities are calculated as a function of the RMSE of the GMOVE procedure and then incorporated into a Bayesian Stochastic Dynamic Programming model which derives monthly operating policies and assesses their performance. As a case study, the proposed methodology is applied to the Skagit Hydropower System (SHS) in Washington state. The results show that the system performance is a nonlinear function of RMSE and therefor suggested that continued improvements in the current forecast accuracy correspond to gradually greater increase in performance of the SHS.