THE CATALAN'S CONSTANT AND SERIES INVOLVING THE ZETA FUNCTION

  • Choi, June-Sang (Department of Mathematics, College of Natural Sciences, Dongguk University)
  • Published : 1998.04.01

Abstract

Some mathematical constants have been used in evaluating series involving the Zeta function, the origin of which can be traced back to an over two centries old theorem of Christian Goldbach. We show some of the series involving the Zeta function can be evaluated in terms of the Catalan's constant by using the theory of the double Gamma function.

Keywords

References

  1. Complex Analysis(Third Ed.) L. V. Ahlfors
  2. Leipzig: Weidmanncshe Buchhandluns v.46 Uber eine Classe von Funktionen, die der Gammafunktion analog sind W. Alexeiewsky
  3. Quart. J. Math. v.31 The theory of the G-function E. W. Barnes
  4. Proc. London. Math. Soc. v.31 Genesis of double Gamma function E. W. Barnes
  5. Philos. Trans. Roy. Soc. Ser. A v.196 The theoty of the double Gamma function E. W. Barnes
  6. Nouvells tables d'integrales definies D. Bierens de Haan
  7. Asterisque, Soc. Math. v.61 Analogues p-adiques des fonctions Γ-multiples,in Journees Arithmetiques de Luminy P. Cassou-Nogues
  8. Math. Japon. v.40 Determinant of Laplacian on $S^3$ J. Choi
  9. Bull. Korean Math. Soc. v.33 no.2 A duplication formula for the double Gamma function Γ₂ J. Choi
  10. Bull. Austral. Math. Soc. v.51 Some series involving the Zeta functions J. Choi;H. M. Srivastava;J. R. Quine
  11. H. Math. Anal. Appl. v.206 Sums associated with the Zeta function Junesang Choi;H. M. Srivastava
  12. Gottingen, Dieterichsche Uber eine Transcendente Funktion V. O. Holder
  13. The Riemann Zeta-Function A. Ivic
  14. J. Reine Angeq. Math. v.57 Uber eine mit der Gamma Funktion verwante Transcendente und deren Anwendung auf die Integralrechnung V. H. Kinkelin
  15. Rocky Mountain Math. J. v.26 no.2 Zeta regularized products and functional determinants on spheres J. R. Quine;Junesang Choi
  16. Amer. Math. Monthly v.93 A theorem fo Goldbach J. D. Shallit;K. Zikan
  17. Tokyo. J. Math. v.3 A proof of the classical Kronecker limit formula T. Shintani
  18. Mathematical Handbook M. R. Spiegel
  19. Riv. Mat. Univ. Parma (4) v.14 A unified presentation of certain classes of series of the Riemann Zeta function H. M. Srivastava
  20. The Theory of the Riemann Zeta Function E. C. Titchmarsh
  21. SIAM J. Math. Anal. v.19 Determinants of Laplacians and multiple Gamma functions I. Vardi
  22. Commun. Math. Phys. v.110 Special functions, spectral functions and the Selberg Zeta function A. Voros
  23. A Course of Modern Analysis(Fourh Ed.) E. T. Whittaker;G. N. Watson
  24. Theory Practice Math. v.4 Euler's constant and some sums related to the Riemann Zeta function Nan-Yue Zhang