SOME PROPERTIES OF THE SEQUNTIAL CLOSURE OPERATOR ON A GNENRALIZED TOPOLOGIAL SPACE

  • Hong, Woo-Chorel (Department of Mathematics Education, Pusan National University)
  • Published : 1998.04.01

Abstract

We give two sufficient conditions that the space (X,C*) be a Fr$\acute{e}$chet-Urysohn space such that $x_n \to x$ in (X,c) if and only if $x_n \to x$ in (X,c*), where c* is the sequential closure operator on a generalized topological (X,c).

Keywords

References

  1. Encyclopaedia of Math. Sciences v.17 A. V. Arhangel'skii;L. S. Pontryagin (Eds.)
  2. Trans. Moscow Math. Soc. v.2 The frequency spectrum of a topology gical space and the product operation A. V. Arhangel'skii
  3. Bull. Korean Math. Soc. v.24 Necessary and sufficient conditions for a generalized topological space to be a topological space W. C. Hong;J. I. Lee;M. K. Kang
  4. Comm. Korean Math. Soc. v.8 On French spaces and sequential converyence groups W. C. Hong
  5. Van Nostrand J. L. Kelley
  6. Top. and its Appl. v.70 Sequential order of product of Frechet spaces T. Nogura;A. Shibakob
  7. Proc. Amer. Math. Soc. v.83 Metrizability and the Frechet-Urysohn property in topological groups P. T. Nyikos