Abstract
In the teacher's guide of mathematics textbook for the 1st grade of the middle school, the clear and logical reason why the multiplication of negative number to negative number makes positive number, and $a^{-m}$ with a>0 and m>0, is defined by ${\frac{1}{a^m}}$ is not given. When we define the multiplication or the power by successive addition or successive multiplication of the same number, respectively, we encounter this ambiguity, in the case that the number of successive operations is negative, In this paper, we name this number, negative counting number, and we make the following more logical and intuitive definition, which is "negatively many successive operations is defined by positively many successive inverse operations." According to this new definition, we define the multiplication by the successive addition or the successive subtraction of the same number, when the multiplier is positive or negative respectively, and the power by the successive multiplication or the power is positive or negative, respectively. In addition, using this new definition and following the E.R.S Instruction strategy which revised and complemented the Bruner's E.I.S Instruction strategy, we develope new teaching model available in the 1st grade class of middle school where the concept of integers, three operations of integers are introduced.ntroduced.