Relative Stability, Ionization Potential, and Chemical Reactivity of the Neutral and Multiply Charged $C_{60}$

중성과 다중 전하를 가진 $C_{60}$의 상대적 안정도, 이온화 에너지 및 화학 반응성

  • 성용길 (동국대학교 이과대학 화학과) ;
  • 손만식 (미주리 주립대학 화학과)
  • Published : 19970300

Abstract

On the basis of our previous paper[Bull. Korean Chem. Soc. 1995, 16, 1015], the relative stability, ionization potential, and chemical reaction of the neutral and multiply charged $C_{60}$n ions(n=3+ to 6-) have been investigated by the semi-empirical MNDO method. $C_{60}^{1-}$ has the highest stability. The ionization potential values of the $C_{60}$ ions range from 15.31 eV of $C_{60}^{2+}$ to -13.01 eV of $C_{60}^{6-}$. These values show a linear relationship according to charges. The average IP per charge is 3.15 eV from our calculations and 3.22 eV from the linear function of IP. A charge- or electron-transfer reaction of $C_{60}^{n+}$ will only occur if the ionization potential of any guest molecule is lower than the electron affinity of the host $C_{60}^{n+}$. If the energy gap between ionization potential and electron affinity, ${\Delta}_{IP-EA}$, is high, charge-transfer reactions arise by the charge-controlled effect. However, if ${\Delta}_{IP-EA}$ is low, electron-transfer reactions arise by the frontier-controlled effect.

전편[Bull. Korean Chem. Soc. 1995, 16, 1015]에 기초하여 중성과 다중 전하를 가진 $C_{60}$이온에 대하여 상대적 안정도, 이온화 에너지 및 화학 반응성을 연구하였다. $C_{60}^{1-}$이 가장 안정하며, 이온화 에너지는 15.31 eV($C_{60}^{2+}$)로부터 -13.01 eV($C_{60}^{6-}$)까지 값을 갖는다. 또한 전하와 이온화 에너지의 상관 관계에서 직선관계가 나타났으며, 전하당 평균 이온화 에너지는 3.15 eV(계산값)와 3.22 eV(상관관계값) 이었다. 양의 전하를 띤 $C_{60}$ 이온의 전하-이동 및 전자-이동 반응은 게스트 분자의 이온화 에너지가 호스트 $C_{60}^{n+}$의 전자 친화도보다 더 낮을 때 일어남을 알 수 있었다. 이때, 이온화 에너지와 전자친화도의 에너지 차이(${\Delta}_{IP-EA}$)가 클 때는 전하-조절 효과에 의하여 전하-이동 반응이 일어나며, 그 에너지 차이가 작을 때는 프론티어-조절 효과에 의하여 전자-이동 반응에 의하여 일어남을 확인하였다.

Keywords

References

  1. Nature v.318 Korto, H. W.;Health, J. R.;O`Brien, S. C.;Curl, R. F.;Smalley, R. E.
  2. Nature v.347 Krschmer, W.;Lamb, L. D.;Fostiropoulos, K.;Huffmann, D. R.
  3. Nature v.426 Petrie, S;Boheme, D. K.
  4. J. Phy. Chem v.90 Zhang, Q. L.;O`Brien, S. C.;Health, J. R.;Liu, Y.;Curl, R. F.;Kroto, H.W.;Smalley, R. E.
  5. J. Am. Chem. Soc. v.114 Petrie, S.;Javahery, G.;Wang, J.;Boheme, D. K.
  6. J. Phy. Chem. v.96 Petrie, S.;Javahery, G.;Wang, J.;Boheme, D. K.
  7. J. Am. Chem. Soc. v.113 Sunderlin, L. S.;Paulino, J. A.;Chow, J.;Kahr, B.;Ben-Amotz, D.;Squires, R. R.
  8. J. Am. Chem. Soc. v.114 Stry, J. J.;Coolbaugh, M. T.;Turos, E.;Garvey, J. F.
  9. Bull. Korean Chem. Soc. v.16 Son, M.-S.;Lee, C.-K.;Paek, U.-H.;Sung, Y. K.
  10. J. Am. Chem. Soc. v.99 Dewar, M. J. S.;Thiel, W.
  11. J. Phys. Chem. v.96 Stanton, R. E.
  12. HyperChem Hypercube
  13. Practical Optimization Gill, P. E.;Murray, W;Wright, M. H.
  14. A Handbook of Computational Chemistry Clark, T.
  15. Chem. Rev. v.91 Clementi, E.;Corongie, G.;Bahattacharya, D.;Feuston, B.;Frye, D.;Preiskorn, A.;Rizzo, A;Xeu, W.
  16. J. Phys, Chem v.95 Chang, A. H. H.;Ermler, W. C.;Pitzer, R. M.
  17. J. Am. Chem. Soc. v.114 Negri, F.;Orlandi, G.;Zerbetto, F.
  18. J. Am. Chem. Soc. v.108 Hale, P. D.
  19. J. Am. Chem. Soc. v.108 Newton, M. D.;Stanton, R. E.
  20. Phy. Rev. v.B45 de Coulon, V.;Martins, J. L.;Reuse, F.
  21. Physics and Chemistry of Finite Systems Pederson, M. R.;Erwin, S. C.;Pickett, W. E.;Jackson, K. A.;Bover, L. L.;Jena, P.(ed.);Khanna, S. N.(ed.);Rao, B. K.(ed.)
  22. J. Am. Phys. v.90 Rosen, A;Stberg, B. W.
  23. Handbook of Chemistry and Physics(65th ed.)
  24. J. Chem. Phys. Lett. v.135 Lhi, H. P.;Alml
  25. Rapid Commun. Mass. Spectrom. Lifshitz, C.;Iraqi, M.;Peres, T.;Fisher, J. E.
  26. J. Am. Chem. Soc. v.108 Cox, D. M.;Trevor, D. J.;Reichmomn, K. C.;Kaldor, A.
  27. Chem. Phys. Lett. v.179 Wang, L. S.;Haufler, R. E.;Wang, L. S.;Chibante, L. P. F.;Jin, C.;Conceicao, J.;Chai, Y.;Samlley, R. E.
  28. J. Am. Chem. Soc. v.90 Klopman, G.
  29. J. Am. Chem. Soc. v.90 Salem, L.
  30. Frontier Orbitals and Organic Chemical Reactions Fleming, I.
  31. J. Chem. Phys. v.20 Fukui, K.;Yonezawa, T.;Shingu, H.