Journal of the Korean Chemical Society 1997, Vol. 41, No. 3 Printed in the Republic of Korea

중성과 다중 전하를 가진 C₆₀의 상대적 안정도, 이온화 에너지 및 화학 반응성

成墉吉* · 孫萬植[†]

동국대학교 이과대학 화학과 '미주리 주립대학 화학과 (1996. 10. 10 접수)

Relative Stability, Ionization Potential, and Chemical Reactivity of the Neutral and Multiply Charged C₆₀

Yong Kiel Sung* and Man-Shick Son[†]

Department of Chemistry, Dongguk University, Seoul 100-751, Korea ¹Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, U.S.A. (Received October 10, 1996)

요 약. 전편[Bull. Korean Chem. Soc. 1995, 16, 1015]에 기초하여 중성과 다중 전하를 가진 C₆₀ 이온에 대 하여 상대적 안정도, 이온화 에너지 및 화학 반응성을 연구하였다. C₆₀¹⁻이 가장 안정하며, 이온화 에너지는 15.31 eV(C₆₀²⁺)로부터 - 13.01 eV(C₆₀⁶⁻)까지 값을 갖는다. 또한 전하와 이온화 에너지의 상관 관계에서 직선관 계가 나타났으며, 전하당 평균 이온화 에너지는 3.15 eV(계산값)와 3.22 eV(상관관계값) 이었다. 양의 전하를 띤 C₆₀ 이온의 전하-이동 및 전자-이동 반응은 게스트 분자의 이온화 에너지가 호스트 C₆₀⁴⁺의 전자 친화도보다 더 낮을 때 일어남을 알 수 있었다. 이때, 이온화 에너지와 전자친화도의 에너지 차아(Δ_{IP-EA})가 클 때는 전하-조 절 효과에 의하여 전하-이동 반응이 일어나며, 그 에너지 차이가 작을 때는 프론티어-조절 효과에 의하여 전 자-이동 반응에 의하여 일어남을 확인하였다.

ABSTRACT. On the basis of our previous paper[*Bull. Korean Chem. Soc.* **1995**, *16*, 1015], the relative stability, ionization potential, and chemical reaction of the neutral and multiply charged $C_{60}n$ ions(n=3+ to 6 -) have been investigated by the semi-empirical MNDO method. C_{60}^{-1} has the highest stability. The ionization potential values of the C_{60} ions range from 15.31 eV of C_{60}^{-2*} to -13.01 eV of C_{60}^{-6-} . These values show a linear relationship according to charges. The average IP per charge is 3.15 eV from our calculations and 3.22 eV from the linear function of IP. A charge- or electron-transfer reaction of C_{60}^{-n*} will only occur if the ionization potential of any guest molecule is lower than the electron affinity of the host C_{60}^{-n*} . If the energy gap between ionization potential and electron affinity, Δ_{D-EA} , is high, charge-transfer reactions arise by the charge-controlled effect. However, if Δ_{IP-EA} is low, electron-transfer reactions arise by the frontier-controlled effect.

INTRODUCTION

The recent discovery¹ and synthesis² of C_{60} , the fullerene or Buckminsterfullerene, have provoked a widespread investigation into the properties of the molecule. In the circumstances of C_{60} chemistry, the chemical reactivity of C_{60} has not been widely studied because it is exceptionally unreactive, unlike ethylene. For the purpose of making C_{60} de-

rivatives, the reactivity between the charged C_{60} ion and guest molecules is a very specific area of considerable interest. Also, the unique geometry of C_{60} and the multiplicity of the multiply charged states of C_{60} make a fascinating field of fullerene chemistry.

Boheme and co-workers³ have explained that adjacent-pentagon fullerene, C_{56} and C_{58} , have a higher chemical reactivity than the isolated-pentagon fullerene of C_{60} , because adjacent-pentagon fullerenes are substantially lower in thermodynamic stability than isolated-pentagon fullerenes. Smalley and co-workers4 have also explained that most smaller fullerenes(C_n with n < 40) are found to be more reactive with small molecules such as NO, SO₂, and CO, than the larger fullerenes(C_n with 40 < n < 80). This inertness of large fullerenes is in accordance with expectations for a closed, edgeless carbon shell with a highly aromatic electronic structure. The chemical reactivities of the neutral and charged C_{60} are reported elsewhere.³⁻⁸ The addition reactions of the charged C_{60} with a guest molecule(M) are as follows;

$$C_{60}^{n+} + M \rightarrow C_{60}M^{n+}$$
 for fullerene cation (1)

$$C_{60}^{n-} + M \rightarrow C_{60}M^{n-}$$
 for fullerene anion (2)

It has been determined that several factors³ influence the efficiency of reaction (1) for different charged states(n+) and for different reactants. The efficiency⁵ of addition reactions shows a dependence upon the ionization potential, the size, and the degree of unsaturation of the molecule. In these addition reactions of the charged C₆₀ ion, the chemical reaction of the C₆₀ ions provides considerable insight into their structures and physical properties such as ionization potentials and electron affinities.

In our previous paper,⁹ the electronic structures and properties of the neutral and multiply charged C_{60}^{n} ions(n=2+ to 6-) with spin states were examined by semi-empirical MNDO method. In this work, we have extended the result of the previous work to chemical reactivity including their relative stability and ionization potential for the neutral and multiply charged C_{60}^{n} ions(n=3+ to 6-).

COMPUTATIONAL METHODS

The same method as in the previous paper⁹ is applied to calculate the properties of the neutral and multiply charged C_{60} ions. The initial geometry of the neutral C_{60} was determined by Santon¹¹ by stereographic projections and a dual graph method.

In this work, the initial structure of C₆₀ was generated by using molecular modeling, HyperChem,¹² and the geometry of the neutral C₆₀ was completely optimized by using the MNDO method with Polak-Ribiere¹³ optimizer on the symmetry-unrestricted geometry. All the calculations of the multiply charged C₆₀ ions have been performed with the semi-empirical RHF MNDO method. The RHF MNDO method can also perform pseudo-RHF calculations for open-shell systems of the multiply charged C60 ions. This method is well-known as the RHF half-electron technique.¹⁴ The calculation produces a set of molecular orbitals appropriate for this pseudo-wave function, assigns the unpaired electron with proper spin, and substitutes this electron in the orbital formerly occupied by the half electrons.

Ionization potentials, (SCF, are obtained from total energy differences between the neutral C_{60} and the charged C_{60} ions, calculated at the equilibrium geometry of the neutral C_{60} .

RESULTS AND DISCUSSION

Relative stability. We have calculated the total energy of C_{60}^{3+-6-} at the equilibrium geometry of the neutral C_{60} . These values and the relative energies are listed in *Table* 1. Relative energies are depicted in *Fig.* 1. The total energies of the multiply charged C_{60} ions increase in the order $C_{60}^{1-} <$

Table 1. Total energies $(E_{tot}/a.u.)$ and relative energies (E_{rel}/eV) of the neutral and multiply charged C₆₀n ions (n=3+ to 6-)

n	Energies	
	E_{tor}	Erel
3+	- 279.328212	36.49
2+	- 279.890873	21.18
1+	- 280.340137	8.95
0	- 280.669140	0.00
1 –	- 280.767723	- 2.68
2-	- 280.749412	-2.18
3-	- 280.618383	1.38
4 –	- 280.370728	8.12
5-	- 280.008911	17.97
6 -	- 279.530762	30.98

Journal of the Korean Chemical Society

Fig. 1. Relative energies of the neutral and multiply charged C_{60}^{n} ions(n=3+ to 6-).

 $C_{60}^{2-} < C_{60} < C_{60}^{3-} < C_{60}^{4-} < C_{60}^{-1+} < C_{60}^{5-} < C_{60}^{2+} < C_{60}^{6-} < C_{60}^{3+}$. It has been estimated that the lowest and highest total energy species among the neutral and multiply charged C_{60} ions in the ground state are C_{60}^{1-} and C_{60}^{3+} . According to the total energies, C_{60}^{1-} and C_{60}^{3+} . According to the total energies, C_{60}^{1-} and C_{60}^{3-} are more stable than the neutral C_{60} . In the view of relative energies, C_{60}^{3+} is less stable than C_{60} by 30.98 eV. However, C_{60}^{1-} and C_{60}^{2-} are more stable than C_{60} by -2.68 eV and -2.18 eV.

Our MNDO calculations are the same as ab initio calculations^{15,16} and PPP¹⁷ calculations. Clementi and co-workers¹⁵ have suggested that the total energy, E(SCF+B), obtained by adding the correlation energy correction with the Becke algorithms of ground state for C_{60}^{-1+} , C_{60} , C_{60}^{-1-} and $C_{60}^{2^-}$ are in the order $C_{60}^{1^-} < C_{60}^{2^-} < C_{60} < C_{60}^{1^+}$ on the [(9,5,1)/(4,2,1)] basis set. Chang¹⁶ and coworkers have reported that C_{60}^{-1-} is more stable than C_{60} and that C_{60}^{2-} is more stable than C_{60} by 2.5 eV, while C_{60}^{3-} is less stable than C_{60} . Also, Negri and co-workers¹⁷ have published that the relative stability of the neutral and anionic C₆₀ ions increases in the order $C_{60}^{1-} < C_{60}^{-2-} < C_{60}^{-3-} < C_{60}^{-3-}$ $C_{60}^{4^-} < C_{60}^{5^-} < C_{60}^{6^-}$. $C_{60}^{1^-}$ is the most important among the multiply charged C₆₀ ions, because the

n	IP	
	ΔSCF	Expt.
2+	15.31	
1+	12.23	12. 25°
0	8.95	6.42~7.98
1 -	2.68	2.60~2.80
2 –	- 0.50	
3-	- 3.57	
4 –	- 6.74	
5 -	- 9.85	
6-	~ 13.01	

Table 2. Ionization potentials(IP/eV) of the neutral and

"Ref. 27. "Ref. 26. "Ref. 24.

most stable C_{60}^{1-} reacts with NO and O_2^{2} .

Ionization potential and electron affinity. lonization potentials(IPs) are compared with experimental values in Table 2 and presented in Fig. 2. The ionization potential of C_{60}^{n-1} is identical to the electron affinity(EA) of the C_{60}^{n-1} . The calculated IPs differ from the results of previous studies.¹⁸⁻²² When the IP values of the neutral and multiply charged C_{60} ions are compared with those of small²³ and $organic^{24}$ molecules, the IP values of their C₆₀ ions are in the range of positive values(15.31 eV of C_{60}^{-2+} to 2.68 eV of C_{60}^{-1-}) and negative ones(-0.5 eV of $C_{60}^{2^-}$ to -13.01 eV of $C_{60}^{6^-}$). The small and organic molecules have a narrow range of 9.25 to 15.58 eV^{25} and 8.01 to 12.98 eV,²⁵ respectively. However the charged C_{60} ions have a wide range of -13.01 to 15.31 eV. From these results of IPs, it is known that the C_{60} ions with 2+ to 1 - charge are endothermic, but the C₆₀ ions with 2- to 6charge are exothermic.

For the C_{60}^{1-} ion, the obtained ionization potential of 2.68 eV is in good agreement with experimental values²⁶ of 2.60 to 2.80 eV and with the predicted values²⁷ of 2.70 to 2.88 eV. The calculated ionization potential of 8.95 eV for the neutral C_{60} is different from the recent experimental values²⁸ of 6.42 to 7.98 eV. It is known that the neutral C_{60} has a high IP and high EA. The calculated ionization potential of 12.23 eV for C_{60}^{1+} is also in good agreement with experimental values²⁹ of 12.25 eV.

Fig. 2. The relationship of ionization potential with charge of the neutral and multiply charged C_{60}^{n} ions(n=2+ to -).

In order to get the relationship between IP and the charge of the neutral and multiply charged C_{60} ions, we plotted the data of IP and *n* (charge) in *Fig.* 2 and obtained the fitted linear function of IP(*n*).

$$IP = 3.6192n + 7.8494 \tag{3}$$

The linear regression value of IP for C_{60} is 7.84 eV, which is in good agreement with 6.42 to 7.98 eV of experimental values. However, that of IPs for C_{60}^{1*} shows a positive error of 0.78 and a negative error of -1.63 and -1.43 compared with experimental values. We have obtained an average IP per charge of 3.15 eV from MNDO method and 3.22 eV from the linear function of IP for the neutral and multiply charged C_{60} .

The relationship between chemical reaction and the HOMO/LUMO energies. Reactivity is determined by a number of factors. Klopman³⁰ and Salem³¹ developed an analysis of reactivity in terms of two factors: an electrostatic interaction approximated by atomic charges and frontier orbital interaction. Fleming³² provided the Klopman-Salem equation that Klopman and Salem derived as an expression for the energy gained and lost when the orbitals of one reactant overlap with those of another using perturbation theory. From Klopman concepts, it has been suggested that a charge-transfer reaction of C_{60}^{n+} will only occur if the IP of any guest molecule is lower than the eleotron affinity of the host C_{60}^{n+} , known as the chargecontrolled effect. Also, electron-transfer reactions will only occur if the IP of any guest molecule is nearly lower than the EA of the host C_{60}^{n+} , known as the frontier-controlled effect.

$$IP(M) < EA(C_{60}^{n^*})$$
 for charge-controlled effect (4)
 $IP(M) \le EA(C_{60}^{n^*})$ for frontier-controlled effect (5)

This relation is very similar to frontier orbital,³³ the HOMO and LUMO. From Koopmans' theorem, the IP and EA are related to HOMO and LUMO energy, respectively. That is, $-\varepsilon_{\rm HOMO}$ =IP and $-\varepsilon_{\rm LUMO}$ =EA. Hence, the high energy gap between the IP and EA, $\Delta_{\rm IP-EA}$, arises by charge-transfer reactions that govern charge-controlled effect, but the low energy gap inversely arises by electron-transfer that governs frontier-controlled effect. In the chemical reaction of C₆₀ⁿ⁺ and a guest molecule having low ionization potential, the role of C₆₀²⁺ is that of an electron acceptor and as a good electrophile by charge- or electron-transfer reaction.

 C_{60}^{2+} may undergo charge-transfer reactions with a guest molecule whose IP lies below 12.23 eV. C₆₀²⁺ reacts with NH₃, having IP of 10.20 eV,²⁵ by charge-controlled effect. The Δ_{IP-EA} between IP of NH₃ and EA of C_{60}^{2*} for the frontier orbitals is 2.03 eV. Also, C₆₀²⁺ reacts with O₂, having IP of 12.06 eV,²⁵ by frontier-controlled effect. The Δ_{IP-EA} between IP of O_2 and EA of C_{60}^{2+} for the frontier orbitals is 0.17 eV. The Δ_{IP-EA} between C_{60}^{2+} and NH_3 is large but that between C_{60}^{2+} and O_2 is small. Therefore, very little electron transfer occurs in the reaction between C_{60}^{2+} and NH₃ and strong electron transfer occurs in the reaction between C_{60}^{2+} and O_2 . C_{60}^{1+} may similarly undergo chargetransfer reactions with a guest molecule whose IP lies below 8.95 eV. Very recently, Garvey and coworker⁸ identified that C_{60}^{2+} reacts with guest molecules(NH_3 and O_2). It has been known that C_{60}^{2+} reacts with NH₃⁸ but C_{60}^{-1+} does not react with NH₃. The EA of C_{60}^{2+} is larger than the IP of NH₃ but the EA of C_{60}^{1+} is smaller than the IP of NH₃. These charge- and frontier-controlled ef-

120

Charge-Controlled Effect

Frontier-Controlled Effect

Fig. 3. Charge- or electron-transfer reaction by governing charge- or frontier controlled effect of C_{60}^{2+} with NH₃ or O₂ molecule having low ionization potential, respectively.

fects between C_{60}^{2*} and guest molecule such as NH₃ and O₂ are presented in *Fig.* 3.

CONCLUSION

The relative stability, ionization potential, and chemical reaction of the neutral and multiply charged C_{60}^{n} ions(n=3+ to 6-) have been investigated by the semi-empirical MNDO method. The ionization potential values of the C_{60} ions range from 15.31 eV of C_{60}^{2+} to -13.01 eV of C_{60}^{6-} . The average IP per charge is 3.15 eV from our calculations and 3.22 eV from the linear function of IP. A charge- or electron-transfer reaction of C_{60}^{n+} occurrs if the ionization potential of any guest moleoule is lower than the electron affinity of the host C_{60}^{n+} . If the energy gap between ionization potential and electron affinity, Δ_{IP-EA} , is high, chargetransfer reactions arise by the charge-controlled effect.

REFERENCES

Kroto, H. W.; Health, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. *Nature* 1985, 318, 162.

1997, Vol. 41, No. 3

- Krschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffmann, D. R. Nature 1990, 347, 354.
- 3. Petrie, S.; Boheme, D. K. Nature 1993, 426, 565.
- Zhang, Q. L.; O'Brien, S. C.; Health, J. R.; Liu, Y.; Curl, R. F.; Kroto, H.W.; Smalley, R. E. J. Phy. Chem. 1986, 90, 525.
- Petrie, S.; Javahery, G.; Wang, J.; Boheme, D. K. J. Am. Chem. Soc. 1992, 114, 9177.
- Petrie, S.; Javahery, G.; Wang, J.; Boheme, D. K. J. Phy. Chem. 1992, '96, 5161.
- Sunderlin, L. S.; Paulino, J. A.; Chow, J.; Kahr, B.; Ben-Amotz, D.; Squires, R. R. J. Am. Chem. Soc. 1991, 113, 5489.
- Stry, J. J.; Coolbaugh, M. T.; Turos, E.; Garvey, J. F. J. Am. Chem. Soc. 1992, 114, 7914.
- Son, M.-S.; Lee, C.-K.; Paek, U.-H.; Sung, Y. K. Bull. Korean Chem. Soc. 1995, 16, 1015.
- Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc. 1977, 99, 4899.
- 11. Stanton, R. E. J. Phys. Chem. 1992, 96, 111.
- 12. Hypercube, HyperChem, Autodesk, Inc., 1992.
- Gill, P. E.; Murray, W.; Wright, M. H. Practical Optimization; Academic Press, Inc.: New York, 1981.
- Clark, T. A Handbook of Computational Chemistry; John Wiley & Sons: New York, 1985.
- Clementi, E.; Corongie, G.; Bahattacharya, D.; Feuston, B.; Frye, D.; Preiskorn, A.; Rizzo, A.; Xeu, W. Chem. Rev. 1991, 91, 679.
- Chang, A. H. H.; Ermler, W. C.; Pitzer, R. M. J. Phys. Chem. 1991, 95, 9288.
- Negri, F.; Orlandi, G.; Zerbetto, F. J. Am. Chem. Soc. 1991, 114, 2909.
- 18. Hale, P. D. J. Am. Chem. Soc. 1986, 108, 6087.
- Newton, M. D.; Stanton, R. E. J. Am. Chem. Soc. 1986, 108, 2469.
- de Coulon, V.; Martins, J. L.; Reuse, F. Phy. Rev. 1992, B45, 13671.
- Pederson, M. R.; Erwin, S. C.; Pickett, W. E.; Jackson, K. A. and Boyer, L. L. *Physics and Chemistry of Finite Systems*; Jena, P.; Khanna, S. N.; Rao, B. K., ed.; Kluwer Academic: 1992; p 1323.
- Rosen, A. and Stberg, B. W. J. Am. Phys. 1989, 90, 2525.
- 23. Small molecules, such as, NO(9.25), NO₂(9.79), NH₃(10.20), O₂(12.06), SO₂(12.34), CO₂(13.77), CO(14.01), H₂(15.43), and N₂(15.58). The number of parentheses is ionization potentials in eV adapted from reference 25.

- 24. Organic molecules, such as, benzene(9.25), acethylene(11.40), ethylene(10.52), methane(12.98), methanol(10.85), and amine(8.01-8.86). The number of parentheses is ionization potentials in eV adapted from reference 25.
- 25. Handbook of Chemistry and Physics, 65th ed.; CRC Press, Inc.: 1984~1985.
- Lhi, H. P.; Alml, J. Chem. Phys. Lett. 1987, 135, 357.
- 27. Lifshitz, C.; Iraqi, M.; Peres, T.; Fisher, J. E. Rapid Commun. Mass. Spectrom. 1992, 238.

- Cox, D. M.; Trevor, D. J.; Reichmonn, K. C.; Kaldor, A. J. Am. Chem. Soc. 1986, 108, 2457.
- Wang, L. S.; Haufler, R. E.; Wang, L. S.; Chibante, L. P. F.; Jin, C.; Conceicao, J.; Chai, Y.; Smalley, R. E. Chem. Phys. Lett. 1991, 179, 449.
- 30. Klopman, G. J. Am. Chem. Soc. 1968, 90, 223.
- 31. Salem, L. J. Am. Chem. Soc. 1968, 90, 553.
- 32. Fleming, I. Frontier Orbitals and Organic Chemical Reactions; John Wiley & Sons: 1976.
- 33. Fukui, K.; Yonezawa, T.; Shingu, H. J. Chem. Phys. 1952, 20, 722.