Objective Estimation of Velocity Streamfunction Field with Discretely Sampled Oceanic Data 11: with Application of Least-square Regression Analysis

객관적 분석을 통한 속도 유선함수(streamfunction) 산출 II: 최소자승 회귀분석법의 응용

  • 조광우 (부경대학교 해양산업개발연구소)
  • Published : 1997.10.01

Abstract

A least-square regression analysis is applied for the estimation of velocity streamfunction field based on discretely sampled current meter data. The coefficients of a streamfuunction that is expanded in terms of trigonometric basis function are obtained by enforcing the horizontal non-divergence of two-dimensional flow field. This method avoids Interpolation and gives a root-mean-square (rms) residual of fit which Includes the divergent part and noisiness of oceanic data. The Implementation of the method Is done by employing a boundary-fitted, curvilinear orthogonal coordinate which facilitates the specification of boundary conditions. An application is successfully made to the Texas-Louisiana shelf using the 32 months current meter data (31 moorings) observed as a part of the Texas-Louisiana Shelf and Transport Processes Study (LATEX). The rms residual of the fitting is relatively small for the shelf, which indicates the field Is Ivell represented by the streamnfunction.

해양의 몇몇 정점에서 관측된 유속자료로부터 속도 유선함수를 최소자승 회귀분석법을 응용하여 산출하였다. 유선함수는 삼각함수의 합으로 표현되며 이들 함수의 상수들은 2차원 유속장의 비발산 부분을 최소화하여 구하였다. 위의 방법은 기존의 방법들이 요구하는 관측치의 보강이 필요치 않으며 관측 및 흐름장의 발산에 기인하는 오차를 계산할 수 있는 장점이 있다. 연안역의 복잡한 해안경계 문제를 쉽게 표현하기 위하여 연안을 경계로 하는 곡선직교좌표를 도입하여 유선함수를 구하였다. 텍사스-루이지아나 대륙붕 순환 및 수송 연구(LATEX)를 위하여 31개 정점에서 관측된 해류계자료를 이용 텍사스-루이지아나 대륙붕상의 속도유선함수를 성공적으로 산출하였다. 위의 해역에서 유선함수 산출오차는 비교적 적게 나타나 유선함수가 표층 유속장을 잘 나타냄을 알 수 있다.

Keywords

References

  1. Ph. D. Dissertation, Texas A&M University, College Station A generalized reduced-gravity ocean model: an application for short-term evolution and prediction of surface mesoscale fields Arango, H. G.
  2. Ph. D. Dissertation, Texas A&M University, College Station Short interval prediction of surface motion on the Texas continental shelf Barron, C. N. Jr.
  3. Deep-Sea Res. v.23 A technique for objective analysis and design of oceanographic experiments applied to MODE-73 Bretherton, F. P.;R. E. Davis;C. B. Fandry
  4. J. Kor. Environ. Sci. Soc. Objective estimation of velocity streamfunction with discretely sampled data Ⅰ: with application of Helmholtz theorem Cho, K.
  5. J. Geophys. Res. v.91 Low-frequency circulation on the Texas-Louisiana continental shelf Cochrane, J. D.;F. J. Kelly
  6. Circulation in the coastal ocean Csanady, G. T.
  7. User's guide for a three-dimensional, primitive equation, numerical ocean model Mellor, G. L.
  8. J. Geophys. Res. v.90 Advances in satellite sea surface temperature measurements and oceanographic application Njoku, D. W.;T. P. Barnett;R. M. Laurs;A. C. Vastano
  9. Technical Proposal. Texas A&M University, Reference No. 93-06-T Louisiana/Texas Physical Oceanography Program Task A Nowlin, W. D. Jr.;A. E. Jochens;N. L. Guinasso Jr.;D. A. Wisenburg;R. O. Reid;S. A. Hsu;R. C. Hamilton
  10. J. Geophys. Res. v.100 Eddy-and wind-forced shelf circulation Oey, L.-Y.
  11. Numerical recipes Press, W. H.;B. P. Flannery;S. A. Teukolsky;W. T. Vettering
  12. J. Geophys. Res. v.98 The annual cycle of the western boundary current in the Gulf of Mexico Sturges, W.
  13. Proc. Symp. on Numerical Generation of Curvilinear Coordinate Systems and Their Use in the Numerical Solution of Partial Differential Equation Numerical grid generation Thompson, J. F.
  14. J. Atmos. Oceanic Technol. v.2 Sea surface topography estimation with infrared satellite imaginary Vastano, A. C.;R. O. Reid
  15. Rev. Geophys. Space Phy. v.18 On using satellite altimetry to determine the general circulation of the ocean with application to geoid improvement Wunsch, C.;E. M. Gasposchkin