소표본 errors-in-vairalbes 모형에서의 통계 추론

Small-Sample Inference in the Errors-in-Variables Model

  • 소병수 (이화여자대학교 통계학과)
  • 발행 : 1997.03.01

초록

We consider the semiparametric linear errors-in-variables model: yi=(${\alpha}+{\beta}ui+{\varepsilon}i$, xi=ui+${\varepsilon}i$ i=1, …, n where (xi, yi) stands for an observation vector, (ui) denotes a set of incidental nuisance parameters, (${\alpha}$ , ${\beta}$) is a vector of regression parameters and (${\varepsilon}i$, ${\delta}i$) are mutually uncorrelated measurement errors with zero mean and finite variances but otherwise unknown distributions. On the basis of a simple small-sample low-noise a, pp.oximation, we propose a new method of comparing the mean squared errors(MSE) of the various competing estimators of the true regression parameters ((${\alpha}$ , ${\beta}$). Then we show that a class of estimators including the classical least squares estimator and the maximum likelihood estimator are consistent and first-order efficient within the class of all regular consistent estimators irrespective of type of measurement errors.

키워드