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Abstract

We consider the semiparametric linear errors-in~variables model: y,= a+ Bu;+ ¢; ,
x;=wu;+06; i¢=1,,n where (x;,y,) stands for an observation vector, (u;)

denotes a set of incidental nuisance parameters, (@, ) is a vector of regression
parameters and (g;, §;) are mutually uncorrelated measurement errors with zero
mean and finite variances but otherwise unknown distributions. On the basis of a

simple small-sample low-noise approximation, we propose a new method of
comparing the mean squared errors(MSE) of the various competing estimators of

the true regression parameters (e, 8). Then we show that a class of estimators

including the classical least squares estimator and the maximum likelihood
estimator are consistent and first-order efficient within the class of all regular
consistent estimators irrespective of type of measurement errors.

* This research was supported by the Ewha research fund, 1994.
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1. Introduction
We consider the following linear semiparametric errors—in-variables model:

yv; = a+ Bu;+ e;
(1.1)
x; = u;+ 9 =1, 7

where (x;, ¥;) represent observations of the unknown error free true values
(u;, v;) which are connected by the linear relations: v;= a+ Su;, with unknown
regression parameters (e, 8) and (6, €;) are mutually uncorrelated measurement

errors with zero mean and finite variances dﬁ of respectively but otherwise unknown
distributions. In this model, we are mainly interested in the problem of efficient
estimation of the unknown functional relations between the true error—free

variables (#;, v;) on the basis of noisy observations (x,, v;), =1, .

When the independent variables #; are subject to measurement errors, the
ordinary least squares estimator (OLSE) of the regression parameters (e, 8) are

known to be generally biased and inconsistent as #n — ©0. See Anderson(1976)
for a discussion of this problem and some of its generalizations. Historically, most
of the research efforts have been directed toward finding alternative estimators
which have desirable properties such as large sample consistency and efficiency

under various assumptions on the variables #%; and measurement errors. For

example, see Fuller (1987) for more extensive review on this approach. Under
usual normal error model, Bickel and Ritov(1987) considered the problem of

efficient estimation of the regression parameters (@, 8) when the error—free

variables #; are iid. random variables with unknown mixture distribution G( - ).

But most of the previous works on this important problem have a serious
limitation in that they are heavily based on the large-sample properties such as
asymptotic bilases and asymptotic MSEs of the various competing estimators.
Thus these results cannot be directly applied to the important class of problems
with relatively small sample sizes. This is typically the case in the experimental
set-up where high cost of the each experiment does not allow large number of
replications as is commonly required in the usual observational study.

In view of its practical importance, the problem of efficient estimation in the
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small-sample errors-in-variables model received relatively little attention in the
literature. As related works in this area, Villegas(1969) considered asymptotic
properties of the least squares estimator when there are repeated observations.

In this paper we will focus on the problem of efficient estimation in the
small-sample errors-in-variables model and develop new optimality theory based
on the small-sample low-noise asymptotics. Specifically, we introduce appropriate
definitions of small-sample consistency and efficiency of the regular estimators of
the regression parameters (@,8) and then we show that the both maximum
likelihood estimator and the least squares estimator have a justification in its own
right as low-noise consistent and first-order efficient estimator without any
reference to the specific distributional assumptions on the measurement errors
such as normality.

This paper is organized as follows: In section 2. we first introduce the new
definitions of the small-sample consistency and low-noise efficiency of the
estimators of (a, 8). Then we derive an important lower-bound for the AMSE of
the arbitrary regular consitent estimators which depends only on the 2-nd order
moments of the measurement errors but is independent of the type of error
distributions. In section 3, we show that the maximum likelihood estimator and the
least squares estimator are both consistent and first-order efficient irrespective of
the type of measurement errors. Finally in section 4, we provide some simulation
results which illustrate the practical relevancy of the small-sample low-noise
approximations.

2. Main Results

In this paper we always assume that the sample size # is a fixed finite

number and we use the following notations. Let z=(z, ", 2, , z;=(x; ),

i=1,-+, n be the 2n-dimensional vector of observations and let gz= (g, -, ﬂn)t
be the mean vector E(z) of z defined by E(z;)=p,=(u;, a+ Bu;), i=1,-,n
We also note that the mean vector g of 2z depends on the parameter vector
0= 1(a,B, uy, ", ,)' and thus we may denote it by x(6) or by wle,B,u,)
showing the explicit dependence on the relevant parameters. We also assume that
vaiance ratio r=(o,/ o‘,)2 is a known constant as is usually assumed in the

errors—-in—-variables literature in order to ensure the identifiability of the regression
parameters (a, ).
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We now introduce the following definition of the regular consisteny of the
estimators of the arbitrary estimand g(a, ).

Definition 1. An estimator %(z) of g(e, B) is called regular consistent if h(-)

is a continuously differentiable function of 2z and satisfies the condition:

h(p(8)) = h((u;, a+ Bu)) = gla,B) holds

for all 8=(a,B, u;, ", u,) (2.1)

Remark 1. Note that our definition of consistency (2.1) is completely different
from the usual large-sample definition of consistency which is used in most of
previous works as in Fuller (1987) and Bickel and Ritov (1987) because we do not
consider the behaviour of the estimator as the sample size n gets large but study

the performance of the estimator as the variances oﬁ 02‘ of the measurement

errors get small for finite sample size n.

Remark 2. For regular estimators, we note that condition (2.1) is equivalent to

the more familiar concept of asymptotic unbiasedness as 0,, 0,—0 which is

defined by:

lirr}mE[h(z)] = gla,p) for all 8=1"(a,B, uy, ", u,). (2.2)

Similarly we note that the condition (2.1) is equivalent to that of the consistency

in probability as o,, 6,~0:

lim)O Wz) = gla,pB) for all 0=(a,B, uy, ", u,). (2.3)

Oy Oy

Remark 3. Any reasonable estimator of g{a, ) must be consistent in the sense
of (2.1) because when there is no measurement error it seems perfectly reasonable
to require that we should be able to recover the true values (e, ) exactly no

matter what they are. In fact every estimator considered in the literature satisfies
this requirement including the maximun likelihood estimator and least squares
estimator.
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In order to compare the performances of various regular consistent estimators,
we introduce the definition of the AMSE (Asymptotic Mean Squared Error) of the
estimator as follows.

Definition 2. AMSE (Asymptotic Mean Squared Error) of the regular consistent
estimator #(2) of g(a, 8) is the quantity defined by:

AMSEUI(2)] =&, lim (ELh(z)~ g, 91"/ 0)). (2.4)

Now we are ready to establish the fundamental lower bound for the AMSEs of
the regular consistent estimators.

Theorem 1. If A(z) is a regular consistent estimator of g(a, 8), then we have
the lower bound:

AMSELW(2)] = (1 + rBN &~ 2uggs+ &5u0) /5 (2.5)

for all (a: /39 Uy, ", un)
where u= 2 u;ln , W= Zlu?/n y Sun= g(ui—;)z,
and (g, &5 = (dg/da, dg/dB).
Proof. By the regular consistency of the estimator A(- ), we get the identity:
h(pa, B, uy, -, uy)) = gla,B) for all (a,B,u).

Differentiating above identity partially with respect to a, 8, u; respectively, we

get the following series of identities:

g;ah Joy; = dg |da 26)

g(ah [3y)u;=dg |95 2.7
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on/dx;+(dh/dv)p = 0, i=1,,n (2.8)

Multiplying (26), (27) and (28) by £k, k andc¢; i=1,---, n respectively and
adding them, we have the identity:

> 0k / 8y by + kyu) + 2 c{(0h)3x,+ Ih/3v: B) = kga+ kogs (2.9)

Now by the Cauchy-Schwartz inequality, we have the inequality:

[ 33(an/ax) ot + 23 (ahIay)'e ] >

(2.10)
[ IZ;C?/O‘?C*‘ g“(kl +hyu,+c; ,8)2/0%] -t (klga+ ngﬁ)z
Taking supremum of the lower bound (2.10) with respect to (¢y,-,c,), we
obtain the inequality:
23((8h/0x)° + (k1 39)°0)) >
"~ (2.11)

P (kg + kg )Yl 23+ b)* (1 + )]

Again taking supremum of the lower bound (2.11) with respect to (k;, k), we
get the inequality:

(3 h/3%) 22+ (3h]3y)?d> = (1 + B ge— 28 .8apu+ W& S (2.12)

Now we note that the regular consistency of the estimator #4( * ) implies
that:

W2~ &a,8) = W2)—h(w
2.13)
— 330h/ox) 6,4 (3h/3v) e+ ola)).

and thus
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AMSE[I(2)] = g[ (0R/3x) 2+ (3h/3y) ). (2.14)

immediately. (2.12) and (2.14) finish the proof.

Remark 4. We note that the lower bound (2.5) is semiparametric lower bound
for the AMSE of the regular consistent estimator because it depends on the 2-nd

order moment of the measurement errors (d;, &;) and independent of the type of

the distributions of the measurement errors.

Now we will consider the problem of identifying a regular consistent estimator
whose AMSE attains the lower bound (25) for all 8=(a, 8, u,).

3. Optimal Estimators

Motivated by the universal lower bound (2.5), we first define the optimality of
the regular consistent estimator as follows.

Definition 3. A regular consistent estimator #(z) of g(a, ) is called optimal
if we have the equality:

AMSE[W(2)]1= (1 + B & —28.gsu+ &3/ 3.1)

for all (a, B, uy, -, u,).

Now we are ready to establish the main result of the paper which claims the
optimality of the normal maximum likelihood estimator and the ordinary least
squares estimator. First we introduce the definition of the normal maximum
likelihood estimator.

Definition 4. Normal maximum likelihood estimator(MLE) of (a, 8) is defined by

(@pm, B) = arg min a,sg;(yi—a-ﬂxi)z/(lhs’zr). (3.2)
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It is well known in the literature, see p405 of Kendall and Stuart (1979), that

Br= (55— 77 50) + ((5yyv L5 + 47712 121 /25, (33)

— — e~

Ay =Yy— Bm-x

where 7= (0,/ dy)z. We also define ordinary least squares estimators (OLSE) of

(a, B) as follows;

—~

B\o = sxy/sxxy a,= }— B:); (34)

Here we use the standard notation;, s, = 2(&\7,-— x)z, Sy = 2(961" O(y;— ¥),
= &
Sy = g(y,-— y? and x= lgx,-/n, y= lgy,-/n.

Theorem 2. Both g(E,\,,, B/,\,,) and g(c;:,, 5’;) are regular consistent and optimal

estimators of g(a, 8).

Proof. By the direct substitution, we can check the regular consistency of the
two estimators immediately. As for the proof of the optimality, it suffices to show
that AMSE matrix of the OLSE and the MLE is given by

AMSE(a, 2)’)=o€(1+52r)[ L —_é ]/suu (3.5)
u

—u
First we note that direct Taylor expansions yield the identities:
Ser= Syt 2 g(ui~7¢)é‘,~+ o(a,)
Su= Bswt 2 i~ u)(BS;+ ) +o(a,) (36)

Syy = stuu+22(ui_;)ﬁﬁz'+ o O'y)
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Above identities imply immediately that

Bo— B=10Sy/Sm— Sey08ulsi+ o(cy)

_ 3.7
=2 u;— u)e;— B3)/sum+ o(ay)
B~ B = (3h]35,4) 855+ (3 1] 05,y ) 5,y + (1] 35,,) 05, + 0(ay)
(3.8)
=2 u;i— u)ei— B3/ s+ o(oy)
and
2—a = 6—Be— u(B—pP+ola,) (39)

_ _ 2
where 85, = S Suw » O055= Sy = BSuu » 05;3= Sy — B S

Above identities (3.7), (3.8), (3.9) imply (3.5) immediately.
This completes the proof.

Remark 5. In order to further discriminate the so-called second-order efficient
estimator among the various first-order efficient estimators, we have to take into
account more terms in the Taylor expansion and should also assume the
knowledge of the third and forth-order moments of the measurement errors which
is typically not available in the small-sample experiment. Therefore this topic will
not be considered in this paper.

4. Simulation and Discussions

In order to illustrate the practical applicability of the small-sample asymptotics
in the real data analysis, we have done simple simulation experiment which
compares the approximate results of our work with the exact results given by the
Monte—-Carlo simulation of the exact MSEs of the normal MLE and OLSE.

We conducted Monte-Carlo simulation for the computation of MSEs of classical
OLSE and normal MLE. For simpe comparison, we used sample size n=3 with

design  (uy, u9,u3)=(—1,0, +1) and tried three different configurations

depending on the size of the common standard deviation o¢,=o,: 0.1, 0.2, 0.5 with
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true parameter values; @=0, 8=1. We used normal random numbers for the
measurement errors and computed MSEs of the estimators with 1000 replications.
On close examination, the simulated values of the MSEs of the both estimators
are generally in good agreement with the values given by the approximate formula
(3.1) for AMSEs derived in Section 3. This results seems to justify the validity of
the small-sample low-noise approximation developed in this paper. Following table
provides typical comparison between our results and those from the Monte-Carlo
simulation study.

Simulated MSEs and AMSE for n=3 with design (u, uy, 23)=(—1,0,+1)

MSE
o OLSE MLE AMSE
0.1 011 on 01
0.2 039 043 04
0.3 225 273 .25

Finally we discuss the problems of extending our results to non-linear and
multivariate errors-in-variables models.

Remark 6. If we consider general non-linear errors-in-variables model:

i

yi = Ru;; B +e;

X = u;+6; 1=1,,n

where A +; /) represents an arbitrary non-linear function of #; and 5 denotes

vector of regression parameters. We can establish similar optimality results for

the non-linear least squares estimators of /A within the small-sample low-noise
framework.

Remark 7. Instead of the univariate errors-in-variables model (1.1), we can
consider multivariate errors-in-variables model where each of the observations in

(x) i=1,,n and the error-free true values (#;) are m-dimensional vectors.

Then we can extend our results to this model without difficulty by considering
appropriate small-sample low-noise approximation.
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