Abstract
Let $X_{t}$ = .beta. $X_{{t-1}}$ + .epsilon.$_{t}$ be an autoregressive process where $\mid$.beta.$\mid$ < 1 and {.epsilon.$_{t}$} is independent and identically distriubted with regularly varying tail probabilities. This process is called the asymptotically stationary first-order autoregressive process (AR(1)) with infinite variance. In this paper, we obtain a host of weak convergences of some point processes based on bootstrapping of { $X_{t}$}. These kinds of results can be generalized under the infinite variance assumption to ensure the asymptotic validity of the bootstrap method for various functionals of { $X_{t}$} such as partial sums, sample covariance and sample correlation functions, etc.ions, etc.