Preparation of Fiber-Reinforced $\gamma-LiAlO_2$ Matrixes by the Tape Casting Method

테이프캐스팅법에 의한 화이버 강화 $\gamma-LiAlO_2$ 메트릭스의 제조

  • Published : 1997.03.01

Abstract

To enhance the strength and formability of MCFC matrixes, alumina/${\gamma}$-LiAlO2 fiber-reinforced ${\gamma}$-LiAlO2 ma-trixes have been investigated. The MCFC matrixes with the thickness of 500~600 ${\mu}{\textrm}{m}$ were prepared by tape-casting of the slurry containing 10~30wt% fibers, followed by heat-treating up to $650^{\circ}C$. The porosity of fi-ber-reinforced matrixes decreased with the content of fibers, while the appropriate porosity(50~60%) for MCFC matrixes could be attained by adding larger ${\gamma}$-LiAlO2 particles with the diameter of about 50${\mu}{\textrm}{m}$ up to 50 wt%. The optimum length and content of the alumina fiber, both in the alignment of fibers and the enhancement of the strength, were found to be below 250${\mu}{\textrm}{m}$ and 20 wt%, respectively. On the other hand, the strength(156 gf/$\textrm{mm}^2$) of the ${\gamma}$-LiAlO2 matrix reinforced with ${\gamma}$-LiAlO2 fibers prepared in this study was improved by 20~40% in comparison with the alumina-fiber-reinforced matrix. It was also found that the alu-mina-fiber-reinforced matrix was completely corroded in molten carbonates but the ${\gamma}$-LiAlO2 was not.

용융탄산염 연료전지(Molten Carbonate Fuel Cell) 메트릭스의 성형성 및 강도 증진을 위한 알루미나/${\gamma}$-LiAlO2 화이버 강화 매트릭스에 대하여 연구하였다. ${\gamma}$-LiAlO2 입자에 10~30wt%의 화이버를 첨가한 슬러리를 테이프캐스팅 한 후 $650^{\circ}C$까지 열처리하여 두께가 500~600$\mu\textrm{m}$인 MCFC 매트릭스를 제조하였다. 화이버의 첨가량이 증가할수록 매트릭스의 기공율은 감소하였으나 입자크기가 대략 50$\mu\textrm{m}$${\gamma}$-LiAlO2 분체의 첨가비를 50wt%까지 증가시킴으로써 MCFC 매트릭스에 적합한 기공율(50~60%)을 얻을 수 있었다. 알루미나 화이버의 첨가량이 20wt% 이고 길이가 250$\mu\textrm{m}$이하인 화이버를 사용하였을 때 매트릭스내의 분산성 및 강도 증진 효과가 가장 우수하였다. 반면에 본 연구에서 제조한 ${\gamma}$-LiAlO2 화이버를 이용한 강화 매트릭스의 강도(156 gf/$\textrm{mm}^2$)는 알루미나 화이버 강화 매트릭스에 비해 20~40% 정도 증진되었다. 또한 알루미나 화이버 강화 매트릭스는 용융탄산염에 의하여 부식되지만 ${\gamma}$-LiAlO2 화이버 강화 매트릭스는 전혀 부식되지 않음을 알 수 있었다.

Keywords

References

  1. Proceedings of the Symposium on Moltern Carbonate Fuel Cell Technology v.84 no.13 Review of Molten Carbonate Fuel Cell Matrix Technology H. C. Maru;L. Paeisch;A. Pigcaud;J. R. Selman(ed.);T. D. Claar(ed.)
  2. Japanese Pat.60,241,656 Electrolyte Tile for MCFC H. Ozu
  3. Proceedings of the Symposium on Molten Carbonate Fuel Cell Technology v.93 no.3 Review of Carbonate Fuel Cell Matrix and Electrolyte Development L. M. Paetsch;J. D. Doyon;M. Farooque;D. Shores(ed.);H. Maru(ed.)
  4. U. S. Pat No. 4,322,382 Electrolyte Matrix for Molten Carbonate Fuel Cells C. L. Bushnell
  5. Mat. Res. Soc. Sympo. Proc v.371 Advanced Fabrication Process of LiAlO₂ Fiber and Its Application to Porous Matrix for Molten Carbonate Fuel Cell K. Suzuki;T. Kakihara;Y. Yamamasu;T. Sasa
  6. Proc. of 2nd Sym. on Molten Carbonate Fuel Cell Technology Society v.90-16 Review of Carbonate Fuel Cell Matrix and Electrolyte H. C. Maru(et. al)
  7. Am. Ceram. Soc. Bull. v.65 no.4 Making Thin. Flat Ceramics-A Review E. P. Hyatt
  8. Am. Ceram. Soc. Bull. v.69 no.6 Tape Casting : The Basic Process for Meeting the Needs of the Electronic Industry R. E. Mistler
  9. J. Korean. Ceram. Soc. v.33 no.10 Preparation of γ-LiAlO₂ Short Fibers by the Sol-Gel Method S. H. Hyun;J. H. Lee;S. A. Hong
  10. Ceramic Fabrication Process. v.9 Doctor Blade Process J. C. Williams;F. F. Y. Wang(ed.)
  11. Modern Ceramic Engineering D. W. Richerson
  12. J. Am. Ceram. Soc. v.77 no.10 Fabrication of Oriented Sic-Whisker-Reinforced Mullite Matrix Composites by Tape Casting M. Wu;G. L. Messing