Metarrhizium anisopliae (Metschn.) Sorok이 생산하는 Biopolymer YU-122의 생산과 그 특성

  • 최용석 (연세대학교 식품생물공학과 및 생물산업소재연구센터) ;
  • 옥승호 (연세대학교 식품생물공학과 및 생물산업소재연구센터) ;
  • 유주현 (연세대학교 식품생물공학과 및 생물산업소재연구센터) ;
  • 배동훈 (단국대학교 식품공학과 및 생물산업소재연구센터)
  • Published : 1997.02.01

Abstract

To produce biopolymer, Metarrhizium anisopliae (Metschn.) Sorok was cultured in a medium containing glucose 1.0%, sucrose 2.0% , soluble starch 1.0%, yeast extract 0.5%, polypeptone 0.05%, K$_{2}$HPO$_{4}$ 0.1% MgSO$_{4}$ $\CDOT $ 7H$_{2}$O 0.02%. The culture broth was centrifuged and the polymer was harvested by adding methanol to the culture supermatant. When three times of methanol was added, the polymer was coagulated and precipitated. Then it was further purified through successive SK-1B, SA-20P, HP-20 column chromatographies. This polymer was designated as Biopolymer YU-122.C:H ratio of this Biopolmer YU-122 was 1:2 and small amount of N is detected by CHN analyzer. Glucose and glactose are main components of this polymer. Average molecular weight of this biopolymer was 1.7%$\times $10$^{6}$ by Sepharose 4B gel permeation chromatography. Optimal condition for biopolymer production was investigated. When 5% of mannitol was used as a carbon source, and polypepton as a N source, highest productivity of biopolymer was achieved. C/N ratio as nutrient was also a major factor in polymer production and its optimal ratio was 3.

Keywords

References

  1. 한국식품과학회 발표논문초록집 v.11 Bacillus polymixa가 생산하는 Levansucrase의 특성 양지영;백운화;유주현;이계호
  2. Microbial Polysaccarides and Polysaccharase Berkeley, R. C. W.;Gooday, G. W.;Ellwood, D. C.
  3. Enzyme Microbiol. Technol. v.11 Production of fructooligosaccharides from sucrose Jung, K. H.;Yun, J. W.;Kang, K. R.;Lim, L. Y.;Lee, J. H.
  4. J. Inst. Biotechnol. v.1 Production of high fructose syrup by flocculated Actinoplanes missouriensis NRRL B-3342 Kang, Y. T.;Kho, Y. H.;Chun, M. J.
  5. Korean J. Food Sci. Technol. v.22 no.7 Studies on the rheological properties of sugar derivative sweetners Lee, C. H.;Park, C. S.;Han, B. J.;Kim, B. C.;Jang, J. H.
  6. Food Biotechnol. v.4 no.1 Biotechnically produced carbohydrates with functional properties for use in food systems Morris, V. J.
  7. Food Biotechnol. v.4 no.1 Continuous production of isomaltose by transglucosylation of surcrose with free and immobilized cells Munir, M.
  8. European J. Appl. Microbiol. Biotechnol. v.10 The intrinsic microbial stability of water-in-oil emusions Verrips, C. T.;Zaalberg, J.
  9. Appl. Microbiol. Biotechnol. v.19 Formation of levan and sorbitol from sucrose by Zymomonas mobilis Viikari, L.
  10. Korean J. Biotechnol. Bioeng. v.5 no.4 Controlled drug release using biodegradable polymer Na, J. W.;Cha, W. S.;Kim, S. I.
  11. J. Gen. Microbiol. v.7 Effect of oil reservoir conditions on the production of water-insoluble levan by Bacillus licheniformis Ramsay, J. A.;Cooper, D. G.;Neufeld, R. J.
  12. Anal. Biochem. v.72 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Bradford, M. M.
  13. carbohydrate Analysis Chaplin, M. F.;Kennedy, J. F.
  14. Advances in Carbohydrate Chemistry and Biochemistry v.36 Paul A. Sandford
  15. Microbial Technology Current State, Future Prospects v.107 Sutherland, I. W.;Ellwood, D. C.;A. A. Bull(et al)(ed.)
  16. Appl. Microbiol. v.74 Agar diffusion method for negative staining of microbial suspensions in salts solutions Anderson, N.;Doane, F. W.
  17. Biotechnol. Bioeng. v.15 Kinetics of the xanthan fermetation Moraine, R. A.;Rogovin, P.
  18. J. Agri. Food Chem. v.38 Production and characterization of microbial levan Han, Y. W.;Claeke, M. A.
  19. Microbial Technology v.1 Kang, K. S.;Cottrell, I. W.;Bull, A.(ed.);Ellwood, D. C.(ed.)
  20. Biotechnology: Principles and Applications Brierley, C. L.;Kelly, D. P.;Seal, K. J.;Best, D. J.
  21. Bull. Soc. Chim. Biol. v.39 Dedonder, P.;Peaud-Lenoel, C.
  22. The Polysaccharides v.3 Aspinall, G. O.
  23. J. Gen. Microbiol. v.107 Investigation of the effect of environmental conditions on the rate of exopolysaccharide synthesis in Azoto bacter vinelandii Jarman, T. R.;Deavin, L.;Slocombe, S.;Righelato, R. C.
  24. Appl. Microbiol. Biotechnol. v.32 Influence of varing nitrogen sources on polysaccharide production by Aureobasidium pullulans in batch culture Auer, D. P. F.;Seviour, R. J.
  25. J. Ferment. Technol. v.51 no.9 Sugar component of the polysaccharide produced by Bacillus subtillis FT-3 Murao, S.;Morita, M.;Takahara, Y.
  26. Can. J. Chem. v.30 Structure of a levan produced by Bacillus polymyxa Murphy, D.
  27. Biochim. Biophys. ACTA v.60 Helical, noncellulosic microfibrils from Acetobacter xylium and Acetbacter suboxydans Currie, A. L.;Ramanathan, N.;Colvin, J. R.
  28. J. Gen. Microbiol. v.122 Production and chemical composition of extracellular polysaccharides of Rhizobium Ghai, S. K.;Hisamatus, M.;Amemura, A.;Harada, T.
  29. Hakkokogaku Kaishi v.59 no.4 High viscosity polysaccharide by Bacillus polymyxa Mitsuda, S.;Miyata, M.;Hirota, T.;Kikuchi, T.
  30. Biotechnol. Letters v.7 no.9 Optimization and characterization of an extracellular polysaccaride produced by Glomerella cingulta Sarkar, J. M.;Hennebert, G. L.;Mayaudon, J.
  31. Appl. Environ. Microbiol. v.50 Production and characterization of a polyer from Arthrobacter sp. Bodie, E. A. Schwartz, R. D.;Catena, A.