DOI QR코드

DOI QR Code

Stability and accuracy for the trapezoidal rule of the Newmark time integration method with variable time step sizes

가변시간간격을 갖는 Newmark 시간적분법의 사다리꼴법칙에 대한 안정성과 정확도

  • Noh, Yong-Su (Dept. of Precision Mechanical Engineering, Hanyang University) ;
  • Chung, Jin-Tae (Dept. of Mechanical Engineering, Hanyang University) ;
  • Bae, Dae-Seong (Dept. of Mechanical Engineering, Hanyang University)
  • 노용수 (한양대학교 대학원 정밀기계공학과) ;
  • 정진태 (한양대학교 기계공학과) ;
  • 배대성 (한양대학교 기계공학과)
  • Published : 1997.10.01

Abstract

Stability and accuracy for the trapezoidal rule of the Newmark time integration method are analyzed when variable time step sizes are adopted. A new analytic approach to stability and accuracy analysis is also proposed for time integration methods with variable time step sizes. The trapezoidal rule with variable time step sizes has the "actual" unconditional stability which is the same as that of the method with constant time step sizes. However, the method with variable time step sizes is first-order accurate while the method with constant time step sizes is second-order accurate. accurate.

Keywords

References

  1. Appl. Math. Comput. v.3 Local Error Controls in Codes for Ordinary Differential Equations Shampine, L. F.
  2. Solving Ordinary Differential Equations Ⅰ Hairer, E.;Noresett, S. P.;Wanner, G.
  3. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations Brenan, K. E.;Campbell, S. I.;Petzol, L. R.
  4. J. Engrg. Mech. Div. v.ASCE 85 no.EM3 A Method of Computation for Structural Dynamics Newmark, N. M.
  5. Analysis of Pipe Whip. Hibbitt, H. D.;Karlsson, B. I.
  6. Analysis of Pipe Whip. Hibbitt, H. D.;Karlsson, B. I.
  7. General Purpose Computer Program for Nonlinear Structural Analysis Oughourlian, C.;Powell, G.
  8. Comput. Methods Appl. Mech. Engrg. v.17/18 Direct Time Integration Methods in Nonlinear Structural Dynamics Felippa, C. A.;Park, K. C.
  9. Pressure Vessels and Piping:Design Technology, A Decade of Progress Time Integration of Structural Dynamics Equations Park, K. C.
  10. Comput. Methods Appl. Mech. Engrg. v.22 A Variable-step Central Difference Method for Structural Dynamics Analysis-Part Ⅰ. Theoretical Aspects Park, K. C.;Underwood, P. G.
  11. Comput. Methods Appl. Mech. Engrg. v.23 A Variable-step Central Difference Method for Structural Dynamics Analysis-Part 2. Implementation and Performance Evaluation Underwood, P. G.;Park, K. C.
  12. Comput. Methods Appl. Mech. Engrg. v.49 An Automatic Time Stepping Algorithm for Dynamic Time Stepping Algorithm for Dynamic Problems Bergan, P. G.;Mollestad, E.
  13. Comput. Methods Appl. Mech. Engrg. v.81 Expedient Implicit Integration with Adaptive Time Stepping Algorithm for Nonlinear Transient Analysis Lee, S. H.;Hsieh, S. S.
  14. Int. J. Numer. Methods Engrg. v.32 Application of a Self-adaptive Algorithm to Non-linear Finite Element Analysis Lee, S. H.;Hsieh, S. S.
  15. Int. J. Numer. Methods Engrg. v.20 A Unified Set of Single Step Algorithms, Part Ⅰ: General Formulation and Applications Zienkiewicz, O. C.;Wood, W. L.;Hine, N. W.
  16. Earthquake Engrg. Struct. Dynam v.20 A Simple Error Estimator and Adaptive Time Stepping Procedure for Dynamic Analysis Zienkiewicz, O. C.;Xie, Y. M
  17. Earthquake Engrg. Struct. Dynam. v.21 A Posteriori Local Error Estimation and Adaptive Time-stepping for Newmark Integration in Dynamic Analysis Zeng, L. F.;Wiberg, N. E.;Li, X. D.;Xie, Y. M
  18. Commun. Numer. Methods Engrg. v.9 A Simple Time- Step Control Scheme Givoli, D.;Henigsberg, I.
  19. ASME J. Appl. Mech. v.60 A Time Integration Algorithm for Structural Dynamics with Improved Numerical Dissipation:the Generalize-α Method Chung. J.;Hulbert. G. M.
  20. Comput. Methods Appl. Mech. Engrg. v.126 Automatic Time Step Control Algorithm for Structural Dynamics Hilber, G. M.;Jang, I.
  21. Earthquake Engrg. Struct. Dynam. v.5 Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics Hilber, H. M.;Hughes, T. J. R.;Taylor, R. L.
  22. Int. J. Numer. Methods Engrg. v.15 An Alpha Modification of Newmark's method Wood, W. L.;Bossak, M.;Zienkiewicz, O. C.