MULTIGRID METHODS FOR THE PURE TRACTION PROBLEM OF LINEAR ELASTICITY: FOSLS FORMULATION

  • Published : 1997.07.01

Abstract

Multigrid methods for two first-order system least squares (FOSLS) using bilinear finite elements are developed for the pure traction problem of planar linear elasticity. They are two-stage algorithms that first solve for the gradients of displacement, then for the displacement itself. In this paper, concentration is given on solving for the gradients of displacement only. Numerical results show that the convergences are uniform even as the material becomes nearly incompressible. Computations for convergence rates are included.

Keywords

References

  1. Internat. J. Numer. Meth. Engng. v.18 On the rates of convergence of the finite element method I. Babuska;B. Szabo
  2. Math. Comp. v.63 A nonconforming mixed multigrid method for the pure traction problem in planar linear elasticity S. C. Brenner
  3. SIAM J. Numer. Anal. v.34 First-order system least squares for second-order partial differential equations: Part Ⅱ Z. Cai;T. A. Manteuffel;S. F. McCormick
  4. First-order system least squares for the Stokes equations, with application to linear elasticity Z. Cai;T. A. Manteuffel;S. F. McCormick
  5. First-order system least squares for the pure traction problem in planar linear elasticity Z. Cai;T. A. Manteuffel;S. F. McCormick;S. Parter
  6. The finite element method for elliptic problem P. Ciarlet
  7. Math. Comp. v.52 An absolutely stabilized finite element method for the Stokes problem J. Douglas;J. Wang
  8. EDF Bulletin da la Direction des Etudes et Recherches Series C Mathematiques, Informatique v.1 Problemes aux limits dans les polygones. Mode d'emploi P. Grisvard
  9. Arch. Rat. Mech. Anal. v.107 Singularites en elasticite P. Grisvard
  10. J. Funct. Anal. v.21 A regularity results for the Stokes problem in a convex polygon R. B. Kellogg;J. E. Osborn
  11. The Mathematical theory of viscous incompressible flows O. A. Ladyhenskaya
  12. Appl. Math. Comp. A conforming mixed finite element method for the pure C.-O. Lee
  13. private communication C.-O. Lee;T. A. Manteuffel;S. F. McCormick
  14. SIAM J. Numer. Anal. v.21 Multigrid methods for variational problems: Further results S. McCormick
  15. Numer. Math. v.53 A family of mixed finite elements for the elasticity problem R. Stenberg
  16. Numer. Math. v.41 An analysis of the p-version of the finite element method for nearly incompressible materials. Uniformly valid, optimal error estimates M. Vogelius