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MULTIGRID METHODS FOR THE PURE
TRACTION PROBLEM OF LINEAR
ELASTICITY: FOSLS FORMULATION

CHANG-OCK LEE

ABSTRACT. Multigrid methods for two first-order system least squar-
es (FOSLS) using bilinear finite elements are developed for the pure
traction problem of planar linear elasticity. They are two-stage algo-
rithms that first solve for the gradients of displacement, then for the
displacement itself. In this paper, concentration is given on solving
for the gradients of displacement only. Numerical results show that
the convergences are uniform even as the material becomes nearly
incompressible. Computations for convergence rates are included.

1. Introduction

Let © be a convex polygon or a C'!'-domain in R? with boundary T.
Denote the Lamé constants by p and A where (u, A) belongs to the range
(141, p2) % [Ao, 00), for fixed positive constants u;, pp and Ag. The pure
traction boundary value problem for planar linear elasticity is given in
the form:

—pAu—(A+p)VV-u=f in Q,

(1.1) 2
Zoij(u)zo on I', 1<:<2,
j=1

where the symbols A, V, and V- stand for the Laplacian, gradient,
and divergence operators, respectively (Au is the vector of components
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Au;). In addition, u = (u3,uz)" denotes the displacement, f = (f1, f2)?
a given body force, and n = (ny,n3)* the unit outerward normal on the
boundary. Furthermore, o;;(u) = A(V - u)d;; + 2ue;;(u) is the stress,
ei;(u) = 1(8;u; + d;u;) is the strain, and d;; is the Kronecker delta
symbol.

It is well-known that finite element method using piecewise linear (P-
1) finite elements converges for moderate fixed A, and as A — oo, i.e.,
the elastic material becomes incompressible, it seems not to converge at
all ({1, 16]). In order to overcome this so called the locking phenome-
non, several attempts have been made in [2, 7, 12, 15]. These attempts
are usually based on mized formulations that lead to discrete equations
that are difficult to solve. Recently, in [4] Cai et. al. proposed first-order
system least squares (FOSLS) for the Stokes equations and applied it to
the pure displacement problem of planar linear elasticity. In addition, in
[5] FOSLS approach was developed for the pure traction problem. They
obtained H!-ellipticity of the least squares functional and showed that
H1-ellipticity is independent of A. Since the FOSLS formulation gen-
erates a symmetric positive (in)definite system, the multigrid method
seems to be the fastest method for the induced linear system. Further-
more H'-ellipticity property guarantees optimal finite element accuracy
and multigrid convergence. Also A-independency of H!-ellipticity gives
uniform convergence of multigrid method with respect to X.

In this paper we present V-cycle multigrid methods to solve the linear
system arising from the bilinear finite element method for two FOSLS
formulations of the pure traction problem. The first one is based on
the least squares functional for the pure traction problem in [5] and the
second one is based on a modification of the least squares functional for
the pure displacement problem in [4]. In both cases, the algorithms are
two-stage, in which one solves for the displacement flux variable first.
The displacement components can then be obtained as solutions of two
scalar Poisson equations. We concentrate on the irnplementation of the
first stage and test the multigrid efficiency numerically since there are
many good Poisson solvers. Furthermore, we show numerically that the
multigrid convergences are uniform with respect to A. In the implemen-
tation of the multigrid algorithms, we do not impose the compatibility
condition to the solution space. Instead, we take the projection right



Multigrid methods for the pure traction problem 815

after each smoothing step of the multigrid algorithms to make solutions
satisfy the compatibility condition.

This paper is organized as follows. In Section 2 we explain notations,
and spaces on which we would solve the problem. FOSLS is discussed
and known results are stated in Section 3. In Section 4, we describe
FOSLS based on Stokes approach. In Section 5 we give a multigrid
algorithm. In the last section numerical results are presented.

2. Notations and Preliminaries

Throughout this paper, the letter C denotes a positive constant in-
dependent of the Lamé constants and the mesh parameter hk, which
may vary from occurrence to occurrence. We frequently use the term
uniform in reference to a relation to mean that it holds independent of
A. Sometimes, we call it A-independency.

We use standard notations and definitions for the Sobolev spaces
[H*(£2)]2, associated inner products (-, *)k, and respective norms || - ||z,
k > 0. The space [L*(Q2)]? is interpreted as [H°(€2)]2, in which case the
norm and inner product are denoted by (-,-) and || - ||, respectively. As
usual HE(Q) denotes the closure of C§°(§) with respect to the norm
Il |l&- See [6].

Let RM denote the space of rigid motions, which is defined by

RM.Z{u:u:<a+b$2)7 a,b)CER}D

c—br;

RM™" its orthogonal complement in [L2()]?, and RM its orthogonal
complement in [H'(Q2)]2. It is known that u € RM if and only if

(2.1.a) / udr =0,
Q

(2.1.b) V xudz =0,
Q

where V x u := 0jus — dru;. In order for a solution of (1.1) to exist,
f € [L2(Q)]? must satisfy the compatibility condition

/f-vdsz Vv € RM.
0
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Then the pure traction problem (1. 1) has a unique solution u € [H 2())?
where [H*(Q)]? := [H*()]2 N RM and [H* (Q)]? = [H*(Q)]2 n RM™.
See [2, 12] for more details.

We will introduce a new independent variable related to the 4-vector
function of gradients of u. We view the original 2-vector functions as
column vectors and the new 4-vector function as a block column vector.

Thus given
()
u= ,
U2

the operator V is extended to 2-vectors componentwise:

_ V’ul
Vu = <V’UQ) )
If U; and Uy are 2-vector functions, then we write the block column

vector
_ (U
U= (U ) .

If D is an operator on 2-vector functions (e.g., D = V., Vx, or nx),
then its extension to block column vectors is defined by

_ /DU,
pu— (B4

Finally, inner products and norms on column vector functions are defined
in the natural componentwise way: ||U||? = Z?:l 1012

Since u is bounded, we may set ¢ = 1 without loss of generality. The
pure traction problem (1.1) is rewritten in the compact form:

-V (AVu)=f in Q,

(22) n-(AVu)=0 on T,
where
A+2 0 0 A
0 11 0
A= 0 1 1 0
A 0 0 A+2
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We introduce the displacement flux variable U == Vu, that is,
U = (U1, U, Us, Us)* = (81u1, Bquy, D1z, Baug)t .

Since the definition of U implies that V x U = 0 in 2, a system that is
equivalent to (2.2) is

U-Vu=0 in Q,
~-V-AU=f in Q,
VxU=0 in Q,
n-AU=0 on T.

(2.3)

This extended system is well posed and suitable for treatment by FOSLS.
However, what is more important in practice is the system that involves
U only:

-V -AU=f in Q,
(2.4) VxU=0 in Q,
n-AU=0 on TI.
This reduced system is also well posed and it is better suited to FOSLS
treatment, especially in the incompressible limit, i.e., A — oo. See [5]
for more details.
We define a solution space for the primitive variables by

W= {ue [HQ)?: V- (AVu) € [L*(2)]%,n - (AVu) =0 on T'}.

Since we have posed (2.2) on the space W, (2.1.b) implies that
(2.5) /(U2 ~Us)dz =0, ie, UL(0,1,-1,0).
Q

We thus define the solution space for the new variables by

V={UeH'( ) :n-AU=00nT,U 1 (0,1,-1,0)"}.
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3. First-Order System Least Squares

The primary objective of this section is to establish a least squares
functional based on (2.4) in appropriate Sobolev spaces. To this end, we
assume that f € [L2( 2)]°. In fact, there is an one-to-one correspondence
between [L? (2)]2 and [L2()]2 (see [2, 12]). Define

Go(Uif) = £+ V- AU|2 + |V x U||? for UeV.

In [5], uniform boundedness and ellipticity (i.e., equivalence) of the
functional Go(U;0) is established in terms of the functional M(U) de-
fined on V by

M(U) = |U||? + 3| VtrU) 2,

where the trace operator tr is defined by trU = U; -+ Uy.
Since the domain  is a convex polygon or a C''-domain, we have
standard H2-regularity results for elasticity equation (2.2) (cf. 8, 9]):

(3.1) vl < CI|V - (AVV)|| Yv e WN[H*(Q))?.

In fact, if V- AVv € [L?(Q)]?, then H?-regularity result implies that
v € [H?(Q)]?. Furthermore, for any constant p > 0, the usual Stokes
H?-regularity implies that (cf. [10, 11])

(3.2) llewli3 + llpll < Cll = pV - Vw + V|,

for any p € HY(2)/R and w € [H}(Q))2 N [H%(Q)]? such that w is
divergence free.

The basic aim of FOSLS is to develop a functional whose homogeneous
form is equivalent to a product norm composed of individual scalar L?
or H-like norms. The essential purpose of this construction is to reduce
the original problem to a system of easily solved scalar equations whose
coupling is weak enough to enable relatively easy solution of the full sys-
tem. While the theory achieves this basic goal, the quality of the relevant
coupling degrades as the material properties tend to the incompressible
limit (i.e., as A — 00). The source of this trouble is the term involving
A in the definition of functional M. Since the expression trU = U; + Uy
represents an intimate coupling between U; and Uy, large A implies that
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the coupling between these two variables must tend to become dominant
in the functional. This difficulty, which causes degrading performance
of standard solvers, will be eliminated here by a simple rotation applied
to U. The rotation we consider is defined by the matrix

1 1
F 1o 7
Q:0010
1 1
V0 -

and the space V = QV = {V = QU : U € V}. Note that ¥ = QV and
that each vector U € V is of the form U = QV, V € V. Note also that
spaces V and V are the same up to boundary conditions.

The solution (U, u) of the extended system (2.3) can be obtained as
the solution of the following two-stage algorithm:
Stage 1: Let 'V € V be the unique solution of

(3.3) Go(QV;f) = min{Go(QW; ) : W € V}
and set U =QV.
Stage 2: Define

Z={ue [H(Q): / wdz = 0}
Q

and let u € Z be the unique solution of
[Vu—-Ul|| =min{||Vv~-U]| :v € Z}.

Then we have the following theorem, which is found in 5].

THEOREM 3.1. When (3.1) and (3.2) hold, we have
(3.4)

%(HVH:{ +MIVVA®) < Go(QV;0) < C(IVIZ + M| VIi[?) vV eV,

H'-equivalence (3.4) immediately implies that standard finite ele-
ments and standard multigrid for minimizing Go(QV;f) will achieve
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uniform and optimal H!-approximations to V (cf. [3]). It is clear that
the uniqueness of the solutions of the two minimization problems guar-
antees that (QV,u) is the unique solution of the pure traction problem
as expressed in (2.3).

For now, let’s concentrate only on finding V to minimize the func-
tional (3.3). Our minimization problem is

min{Go(QV;0):n-AV=00n D,V L (0,1,-1,0)'}.

In order to make (3.4) be real H!-equivalence without A\ appearing,
we will rescale V1: let the new V; be the old V; times A. The scaling is
defined by the matrix

L9000

0 1 0 0

D= 0 010

0 0 0 1

Let V=D"1QU and

V2(1+3) 0 0 2
0 11 0
B=AQD = 0 11 0
V2(1+3%) 0 0 —2

Then V - AU becomes V- AQDD QU = V- BV and V x U becomes
Vx QDD QU =V x QDV.

Our modified problem is
(3.5)  min{G1(V;0):n-BV=00onT,V 1(0,1,-1,0)!},

where

Gi1(Vif) =lf + V- BV|* +|[Vx QDV|? for VeV.
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4. FOSLS based on Stokes approach

Recently in [13], a new FOSLS formulation based on the FOSLS for
Stokes equation in [4] was proposed for the pure traction problem.

We describe the new formulation briefly. From previous sections, we
know that

V.A= (/\ + 2)61 Oy 0o AO;
o ADp & O (/\ -+ 2)82

and

(& & 0 0
vx—(o 0 & —81/)‘

Then, first subtract row 2 of Vx from row 1 of V - A. Next, add row 1
of Vx to row 2 of V- A. Leaving V x alone, we obtain

C((A+28 3% 0 (A+1)9
V"“S“((xu)&i 0 8 (,\+2)a;)

and
2439 9, 0O

1
L.
.B,=V-A,QD = | X2 V2 _
V V Q (Z%iiiaz 0 al —\}§62>

Now, our new problem is
(41)  min{G2(V;0):n-BV=00onT,V L (0,1,-1,0)"},
where
Go(Vif) = |If+V B, V|?+[VxQDV|? for VeV.

In [13], the convergence rate for V(1,0)-multigrid method for this for-
mulation was analyzed to be about 0.5.

5. The Multigrid Algorithm

We now turn to a numerical method for the approximation of the so-
lution V of (3.5) or (4.1). Subdivide 2 into a set 7% of non-overlapping
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rectangles such that {2 = Urc7« T, and no vertex of one rectangle lies on
the edge of another rectangle. 7%*! is obtained by connecting the mid-
points of the edges of the rectangles in 7%. Let hy := maxyc 7 diam T,
then hy = 2hiy;. Now let us define the finite element space for our
multigrid algorithm MG.

Vi = {U :U|r is bilinear for all T € T*,
U is continuous on 2,n- AU =0 onI}.

Note that Viy1 C Vi C [H1(Q)]%. Then the following approximation
property holds: there exists a constant C such that for all V € V, there
exists V € VY such that

IV = VI + kel Vs = V3 S CRIVsll,  5=1,... 4.

The k-th level iteration scheme of the multigrid algorithm MG:
The k-th level iteration with initial iterate Vo € V;, yields MG(k, Vo, F)
as an approximate solution to the following problem:

Find V € V; satisfying the linear system

(5.1) G(V)=F (=F(f,V)).

Here, the above linear system (5.1) comes from the discretization process
of the minimization problems (3.5) or (4.1) on the finite element space
V.

For k = 1, MG(1, Vo, F) is the solution obtained from a direct method,
ie.,

MG(1, Vo, F) = G['F.
For k > 1,

(1) Pre-Smoothing Step: the approximation V,,,, € Vj is constructed
by m; point Gauss-Seidel iterations with an initial iterate V.
Here, m; is an integer to be determined later.

(2) Correction Step: The coarser-grid correction in Vj_; is obtained
by applying the (k — 1)-st level iteration. In other words, it is
the standard V-cycle multigrid method. More precisely,

W = MG(k - 1,0, F)



Multigrid methods for the pure traction problem 823
where F is defined by
F:=IFYF -GV
= ( k( my ) -

Here, (If™1)t = I* | and If_, is bilinear interpolation.

(3) Post-Smoothing Step: the approximation V,,, € V. is con-
structed by my point Gauss-Seidel iterations with the initial it-
erate V, + [ ,’:_1W. Here, my is an integer to be determined
later as well.

(4) Put

MG(k, Vo, F)=V,,,.

When we construct the linear system (5.1), we do not impose the
condition (2.5) for k£ > 2 because the space Vi has a natural coordinate
system which consists of the values of piecewise bilinear functions ht
mesh points. However, we have to impose (2.5) in the coarsest grid
because we need to solve the problem by direct method in the coarsest
grid. Therefore we obtain the singular system (5.1) for k > 1. To
get a unique solution we take Gram-Schmidt process right after each
smoothing step of the multigrid algorithm, i.e.,

() () - ).

6. Experimental Results

For our numerical experiments, we choose a model problem with x =
1:
—pAu—-(A+p)VV-u=0 in Q= unit square,

2
> oi(w)=0 on I, 1<i<2.
i=1

Of course, the exact solution is zero. We take a uniform grid on  and
wild initial iterates. The experiments reported here were run in double-
precision arithmetic on a SUN Sparc-20 Workstation.

The multigrid algorithms in this section are called one-sided methods
and denoted by V(1,0)-MG, i.e., we use one pre-smoothing step and no
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TABLE 1. Convergence rate of V(1,0)-MG based on G4

h=% [ h=% [h=% | k= | h=a
A=10 0.5796 0.7556 0.8065 0.8075 0.8114
A =100 0.5996 0.8003 0.8274 0.8319 0.8340
A = 1000 0.6019 0.8028 0.8296 0.8345 0.8365

TABLE 2. Convergence rate of V(1,0)-MG based on G,

1 1 1 _ ]
h =g h=g5 | h=1 | h=3% | k=g
A=10 0.4728 | 0.6030 | 06271 | 06541 | 0.6554
A = 100 0.4691 | 05822 | 06378 | 06513 | 0.6577
A=1000 | 0.4688 | 0.5790 | 0.6399 | 0.6520 | 0.6590

post-smoothing step. If both smoothing steps are used, the multigrid
method is called symmetric and denoted by V(1,1)-MG. Note that as
far as the convergence is concerned a V(1,1)-multigrid is the same as two
V(1,0)-multigrid methods (See [14]).

We obtained the efficiency of multigrid algorithms by measuring the
convergence rate, i.e., ratio of successive square roots of functional values
G;(V;0) (¢ = 1,2) since the least squares functionals are equivalent to
the square of H!-norm.

Table 1 and Table 2 represent convergence rates after 20 V(1,0)-cycles
for acceptable convergence. The convergence rates are degrading as h
tends to zero, but there seem to be uniform bounds, which coincides with
the theory. Usually V(1,0)-multigrid method using P — 1 finite elements
for Poisson equation shows that the convergence rate with respect to the
energy norm is about 0.3. Our numerical computations show that the
multigrid algorithm using FOSLS for the pure traction problem may not
be as good as the one for Poisson equation. We may think that solving
the problem for 4-vectors simultaneously causes the poor convergence
rates and, in addition, the coupling of boundary conditions also causes
the deterioration.

Figure 1 and Figure 2 represent the solutions after 20 V(1,0)-MG
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Solutions after 20 V(1,0)-cycles based on G

cycles for h = 512— and A = 10. Since f = 0, the solutions are exactly
errors so that we see the shape of errors and magnitudes componentwise.
In Figure 1, even after 20 MG-cycles the multigrid method for FOSLS
based on G1 produces the errors which have both smoothing and highly
oscillating parts. From Figure 2, we know that the multigrid method for
FOSLS based on G2 has errors which have only smoothing part. From
the convergence rate and the shape of errors, we may think multigrid
method based on G is better than G;. As a final conclusion, we need
to develop a new FOSLS formulation to get rid of the effect of coupled
boundary conditions between vector components.
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FIGURE 2. Solutions after 20 V(1,0)-cycles based on G2
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