Tripotence for irreducible sign-pattern matrices

  • Gwang Yeon Lee (Department of Mathematics, Hanseo University, Seosan 356-820, Korea) ;
  • Yue Ho Lee (Department of Mathematics, Sung Kyun Kwan University, Suwon 440-746, Korea) ;
  • Seok Zun Song (Department of Mathematics, Cheju National University, Cheju 690-756, Korea)
  • Published : 1997.01.01

Abstract

A matrix whose entries consist of the symbols +, -, 0 is called a sign-pattern matrix. We characterize the $n \times n$ irreducible sign-pattern matrices that are sign tripotent.

Keywords

References

  1. Lin. Alg. Appl. v.180 Idempotence for sign-pattern matrices C. Eschenbach
  2. Lin. Alg. Appl. v.136 A combinatorial converse to the Perron-Frobenius theorem C. Eschenbach;Charles R. Johnson
  3. Comm. Korean Math. Soc. v.10 no.1 On irreducible sign-tripotent matrices G. -Y. Lee;H. -G. Shin
  4. SIAM Review v.11 Qualitative problems in matrix theory J. Maybee;J. Quirt