ON UDL DECOMPOSITIONS IN SEMIGROUPS

  • Lim, Yong-Do (Department of Mathematics Kyungpook National University )
  • Published : 1997.08.01

Abstract

For a non-degenerate symmetric bilinear form $\sigma$ on a finite dimensional vector space E, the Jordan algebra of $\sigma$-symmetric operators has a symmetric cone $\Omega_\sigma$ of positive definite operators with respect to $\sigma$. The cone $C_\sigma$ of elements (x,y) \in E \times E with \sigma(x,y) \geq 0$ gives the compression semigroup. In this work, we show that in the sutomorphism group of the tube domain over $\Omega_\sigma$, this semigroup has a UDL and Ol'shanskii decompositions and is exactly the compression semigroup of $\Omega_sigma$.

Keywords

References

  1. Analysis on Symmetric Cones. J. Faraut;A. Koranyi
  2. Lie groups, Conver Cones, and Semigroups J. Hilgert;K. H. Hofmann;J. D. Lawson
  3. Lect. Notes Math. v.1552 Basic theory of Lie Semigroups and applications J. Hilgert;K. H. Neeb
  4. Lectures notes Jordan algebras and their applications M. Koecher
  5. Ph.D theses Semigroupe de Lie associe a une algebre de Jordan euclidienne K. Koufany
  6. J. reine angew. Math. v.448 Polar and Ol'shanskii decompositions J. D. Lawson
  7. Semigroups in Algebra, Geometry and Analysis, Water de Gruyter Semigroups of Ol'shanskii type J. D. Lawson
  8. Ph.D theses Jordan alegbras and Lie semigroups Y. Lim
  9. J. Math. Soc. Japan v.45 Manifold of primitive idempotents in a Jordan Hilbert algebra T. Nomura
  10. Ergod. Theo. and Dyn. Sys. v.8 Measure theoretic entropy of the system of hard spheres M. Wojtkowski
  11. Ergod. Theo. and Dyn. Sys. v.5 Invariant families of cones and Lyapunov exponents M. Wojtkowski