EXTENSIONS OF THE BORSUK-ULAM THEOREM

  • Kim, In-Sook (Department of Mathematics Sung Kyun Kwan University)
  • Published : 1997.08.01

Abstract

In this paper we give a generalization of the well-known Borsuk-Ulam theorem and its extensions to countably many products of spheres.

Keywords

References

  1. Comm. Pure Appl. Math. v.34 A geometrical index for the group S¹ and some applications to the study of periodic solutions of ordinary differential equations V. Benci
  2. Comm. Pure Appl. Math. v.38 Existence of multiple periodic orbits on star-shaped Hamiltonian surfaces H. Berestycki;J. M. Lasry;G. Mancini;B. Ruf
  3. Topology and geometry G. E. Bredon
  4. Almost periodic functions C. Corduneanu
  5. Contemp. Math. v.19 Simple proofs of some Borsuk-Ulam results A. Dold
  6. Invent. Math. v.45 Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems E. R. Fadell;P. H. Rabinowitz
  7. Doctoral Thesis Zu einer Indextheorie f¨ur fastperiodische Aktionen I. S. Kim
  8. Critical point theory and Hamiltonian systems J. Mawhin;M. Willem
  9. Aufl. v.4 Irrationalzahlen O. Perron
  10. Topol. Methods Nonlinear Anal. v.1 Spheres and symmetry: Borsuk’s antipodal theorem H. Steinlein