Abstract
Let $C_d$ be the rational curve of degree d in $P_k ^3$ given parametrically by $x_0 = u^d, X_1 = u^{d - 1}t, X_2 = ut^{d - 1}, X_3 = t^d (d \geq 4)$. Then the defining ideal of $C_d$ can be minimally generated by d polynomials $F_1, F_2, \ldots, F_d$ such that $degF_1 = 2, degF_2 = \cdots = degF_d = d - 1$ and $C_d$ is a set-theoretically complete intersection on $F_2 = X_1^{d-1} - X_2X_0^{d-2}$ for every field k of characteristic p > 0. For the proofs we will use the notion of Grobner basis.