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APPLICATION OF GROBNER BASES
TO SOME RATIONAL CURVES

YouNG Hyun CHO AND JAE MYUNG CHUNG

ABSTRACT. Let C, be the rational curve of degree d in Pi given
parametrically by Xo = u?, X; = u?~1¢, X = w91, X5 = t¢
(d > 4). Then the defining ideal of C4 can be minimally generated by
d polynomials Fy, F», ..., F; such that deg F} = 2, degFp = --- =
deg Fg = d—1 and Cy is a set-theoretically complete intersection on
Fp = X371 — X, XZ7? for every field k of characteristic p > 0. For
the proofs we will use the notion of Grébner basis.

1. Introduction

One of the classical old problems in algebraic geometry is whether
every connected projective curve in P$ is a set-theoretic complete in-
tersection. For any d > 4, let Cy be the rational curve of degree d in P
given parametrically by Xp = u?, X; = u¢ 1, X, = wtd1, X5 =4, If
k is an algebraically closed field of characteristic p > 0, then in [3] it was
shown that Cy is a set-theoretically complete intersections in P? for any
d > 4. But even for d = 4, it is not known whether the rational quartic
curve Cy is a set-theoretic complete intersection in characteristic zero
field.

The main results in this article are the followings. The defining
ideal of Cy4 can be minimally generated by d polynomials Fy, Fy, ..., Fy
such that degFy; = 2, and degFy = --- = degF; = d — 1 for any
d > 4. Next we show that C,; is a set-theoretic complete intersection
on Fy = X{i"l - XQXSI_2 for every field k of characteristic p > 0, and
this fact is a generalization of Proposition 1.5 in [5]. For the proofs, we
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use the notion of Grobner bases of ideals in polynomial rings. Applying
Buchberger’s algorithm to the defining ideal of the corresponding affine
curve Eg given parametrically by ¥, = 5, Y2 = 5471, Y3 = 5%, we get
the Grobner basis of the defining ideal of E;. Then by Proposition
2.2, we find the Grobner basis of the defining ideal of Cy, and this set
consists of minimal equations defining Cy in Theorem 3.3.

2. Grobner Bases

In this section we introduce the notion of Grobner bases and those
properties which are needed in next sections. For the main reference
you may see [2].

Let S be a polynomial ring k[X;,..., X,,] over a field &k and A be
the set of monomials in §. We give the reverse lexicographic order
to A as follows: for two monomials m = X' X3%... X% and n =
X{’IXS2 - XU we write m > n iff degm > degn or degm = degn and
a; < b; for the last index ¢ with a; # b;.

> is a monomial order and for any f € S we define the initial term
of f, written in(f), to be the greatest term of f with respect to the
order >. For an ideal I C S, we define in(/) to be the monomial ideal
generated by the elements in(f) for all f € I.

For an ideal I C k[X1,..., Xy}, aset of polynomials {f,...,f.} C [
is called a Grébner basis for [ if in([) is generated by in(f1),...,in(f,).
It can be easily checked that if {fi,..., f.} C I is a Grobner basis of 1
then I = (f1,..., fr).

Now for a polynomial f in S, we denote "f for the homogeneous
polynomial Xgegff(%,...,%) in kiXop,...,X.,]. Also for any ideal
I C S, "I will denote the homogeneous ideal generated by the forms
hf with fel.

In [6], we can find the following well-known fzcts.

PROPOSITION 2.1. (1) IfI(V') is the defining ideal of an affine variety
V' in A}, then the defining ideal of its projective closure in P} is "I(V').
(2) For an ideal I C S, "rad I = rad"I.

We give a monomial order to the set of monomials in k[Xg,..., X,
(20> ’
as follows: for any monomial m = Xg° X" ... X2 we rewrite m as
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X'+ X2 X3°. Then we apply the reverse lexicographic order with
respect to the changed order of variables. From this setting of order,
we can check that in(f) = in("f) for any f € S.

PrOPOSITION 2.2. (1) If{fi,..., f+} is a Grébner basis of the ideal
ICS, then{"f, ..., "f.} is a Grobner basis of the ideal "I.

(2) If {f1,..., fr} is a Grobner basis of the ideal (f1,--.,fr) and
rad(fi,..., fr) = I then "I = rad("f,,. .. ).

Proof. Refer [5]. O

3. Minimal set of defining equations of

Let C; be the rational curve of degree d in PP} given parametrically by
Xo=u, X; =ud 1, Xy = ut?=l, X3 =t Take the standard affine
open set Xo # 0 and put Yl - Xl/X(), Y2 = XQ/X(), Y3 - X3/X0.

Then Cj is the projective closure of the affine curve E;, Y = s,
YQ = Sd‘l, Y3 == Sd.
The defining ideals of general affine curves of the form Y; = 8%,

Y; = s7, ¥3 = s” have been completely described by Herzog in [4].
By using the Theorem 3.8 in [4], we can calculate that ¥; Y, — Y; and
Yld_1 — Y3 are generators of I{E,;). Our aim is to find the Grébner basis
of I(E4) and to calculate this we will use Buchberger’s algorithm.

ProposITION 3.1 ([2]). Let S = k[X1,..., X, with a monomial or-
der and g1, ..., g: be nonzero elements of S. For each pair of indices t,7
we define m;; = in(g;)/ GCD(in(g;), in(g;)). GCD denotes the greatest
common divisor. Next we choose a standard expression

5(9:,95) = mjigi — mi;g;

2
(%) = Z fffj)gu + hij
p=1
for m;;g; —m;jg; with respecto to g1,...,g;. Then the elements g1, ..,

gt form a Grébner basis iff h;; = 0 for all ¢ and j.
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Here a standard expression (x) is an expression satisfying the con-
dition that none of the terms of h;; is in (in(g1),..., in(g:)) and

in(S(g:,95)) > in(f;(fj)g#) for every u.

Buchberger’s Algorithm [2]: In the Proposition 3.1, let (g1,...,g:)
= I. Compute the remainders h;; of S(g;,g;). If all the h;; = 0, then
{91,...,4:} form a Grobner basis for [. If some h,; # 0, then replace
g1,---,9¢ With g1,...¢9s,h;;, and repeat the process. Since the ideal
generated by the initial forms of g1,...,g;, hs; is strictly larger than
the one generated by the initial forms of ¢,..., ¢, this process must
terminate after finitely many steps.

THEOREM 3.2. The Grébner Basis of I(Ey) C k[Y1,Y2,Ys] is {f1 =
VYo=Ys, fo =Y -Ys, f3 =YY= YR, . fa = YT YR,
for any d > 4.

Proof. Again, we use the reverse lexicographic order to the set of
monomials in k[Y7, Y, Y3]. in(f1) = V1Y, in(fo) = Y71

S(fi, f2) = (V) (V1Ye — Ya) — (1Yo / V) (Y — V5)
= —(Y1d—2y3 - Y22)-

We can see —(Y""2Y3 — Y2) is a remainder of an standard expression
of S(f1, f2). Set fs = —S(f1, f2) and add f3 to {f1, f2}. Now,
S(f1, f3) = (Y23 /Y1)(NYz — Ya) - (MYe/ V) (Y2 - Y5)
= - (Y75 - Y5).

Again —(Y£73Y —Y}) is a remainder of S(fy, f3). Set fs = —S(f1, f3),
and add f; to {f1, f2, f3}. Repeating this way, we get

S(f1, fa—1) = (Y2YS 3 /Y1) (Y — Ya) — (V1Y /Y1) (YPYS % — Y2
— Y2d——l o Ylygd——2~
Set fd = S(flafd—l)y then
S(f1, fa) = (Y371 /Ya)(1Ya — Y3) — (1Yo /Y) (V57! = V1Y ?)
=Y3fq 1,
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hence the remainder is 0. Until now we found the set {fi,..., fa} and
to claim that this set is a Grobner basis of I{Ey) = (f1, f2) we only
need to check that the remainders of standard expressions of S(f;, f;)
are 0, for 2 <i < j <d. For j < d,

S(fu £3) = (YT YT (Y - v
- (YT YT (Y T -
— Ylj—iY2j—1 . Yr2i~ly3j—i
= Y2i_1(Y1j_i}/éj_i - Ysj_i)
=Y, (ViYe - ¥3)G,

for some G € k[Y1,Y>,Y3]. For j = d, since in(f;) = Yld_i“‘“le"i‘2 and
in(fs) = Y£71, GCD(in(f;),in(f4)) = 1. Hence remainders of standard
expressions of S(f;, f4) = 0. O

THEOREM 3.3. The Grobner basis of I(Cy) is {F] = X1 X5 — X X3,
Fy = X&' - X372Xy, Fs = X{2 X5 — X$73X3, Fy = XE3X2 -
Xg*4X23, R Xg_l — XlXéi_z}, for any d > 4. Specially this set
generates I(Cy) minimally.

Proof. Change the variables Y;’s in Theorem 3.2 to X;’s and then
use Proposition 2.1(1) and Proposition 2.2(1). Minimality comes from
comparing each terms of F}’s. O

COROLLARY 3.4. Cy is not arithmetically Cohen-Macaulay for any
d> 4.

Proof. By [1], Cy is arithmetically Cohen-Macaulay iff the minimal
number of generators of I(Cy) < 3. O

4. Set-theoretic complete intersection

In this section we will show that Cy is a set-theoretic complete in-
tersection on Fy = X¢ 1 — X@72X,, for chk = p > 0.
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LEMMA 4.1. Let p be a prime and d > 4. Choose k > 0 such that
p*>(d—-1)% For{=1,...,d— 2, write fpF = (d — 1)ay + B¢, where
a¢ and (¢ are integers such that ay > 0 and 0 < 8, < d — 2. Then
ap + B < p*.

k
Proof. ag+ 5 = d_fipk“&%+ﬁf <pP(1-F5)+ 5 <pr - (E

Be) <pF - 1< ph O
THEOREM 4.2. Cy is a set-theoretically complete intersection on
F =X - X¢2X, ifchk =p > 0.
Proof. Let k be an integer such that p* > (d -- 1)2. Then,
() (X2 X2 = Xg)" )"
= (X" xg - Xz
ke k k
= X{DXPE @ xP XDyt
(d = )XY XE (—X3)P" 4D 4 (—Xg)P"d-1),

Write p* = (d — 1)ag + By, for £ = 1,...,d — 2 and a; and 3, are
integers such that ay > 0,0 < 3y < d — 2. Then
() = XX (@ (e gt et
oo (d = XTI R (- x) 4D s () vet
= X§" 4 (d— 1) Xge-2 x P x 2Dyt L
+(d = DX5 XD XY (= X5) @2 4 (- x)e-nt
mod(X 371 — X,).
Let the last polynomial to be g, and compute the degrees of each terms
in g. The first term has degree dp* and the last term has degree (d —

1)p*. The degrees of middle terms = o, + Be+prl+prd-1-1¢) =
phd+ap+ 8o —pF < p*"d by the Lemma 41,for £ =1,...,d—2. Hence

in(g) = X;"’k. Since in(X{™! - X;5) = X+t and GCD(in(g),in(X%~! —
X)) =1, {Xf"1 — X5,9} is a Grobner basis of (Xf"1 - Xo,9).
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On the other hand, because (X; X, —Xg)(d_l)"’k Egmod(X{i_1 —X3)
and (X&' — Xo, X1 Xy — X3) is a prime ideal we can easily check
that rad(X{l'1 - X2,9) = (Xf"1 — X9,X1Xo - X3). Hence I(Cy) =
"(Eq) ="(X{ — X5, X1 X0~ X3) = hrad(X 81 — X, g). Now, since
{X{1 — X;,g} is a Grébner basis of (X&1 — Xy, 9), hrad(X {1t —
X2,9) = rad(*(X{! — X5),"g) by Proposition 2.2(2).

Therefore I(C,) = rad(X~! — X 2Xy,"g), and this means that
Cq is a set-theoretically complete intersection on Fs.
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