Purification and Characterization of Glyoxalase I from Chlamydomonas reinhardtii

  • Hwang, Sun-Jun (Department of Biochemistry and Molecular Biology, Hanyang University) ;
  • Chai, Young-Gyu (Department of Biochemistry and Molecular Biology, Hanyang University)
  • Received : 1995.11.30
  • Published : 1996.07.31

Abstract

Glyoxalase I (Ee 4.4.1.5, lactoylglutathione lyase) from Chlamydomonas reinhardtii was purified to homogeneity by ammonium sulfate fractionation, anion-exchange chromatography, hydrophobic interaction chromatography, and affinity chromatography on S-hexylglutathione agarose. The purified enzyme was judged to be homogeneous on SDS-PAGE, and consisted of a single polypeptide chain with a relative molecular weight of 24,000. The enzyme was most active at $40^{\circ}C$ and pH 7.5. It was catalytically most active with methylglyoxal as substrate. A number of properties of the Chlamydomonas glyoxalase I enzyme, such as substrate specificity, molecular mass, kinetic parameters, pi, metal ion effect, have been determined and compared with those reported for preparations from other sources. It had somewhat different characteristics from mammalian enzymes.

Keywords

References

  1. Anal. Biochem. v.92 Arronson, A.C.;Tibbelin, G.;Mannervik, B. https://doi.org/10.1016/0003-2697(79)90676-6
  2. IRCS Med. Sci. v.14 Carrington, S.J.;Douglas, K.T.
  3. Annu. Rev. Microbiol. v.38 Cooper, R.A. https://doi.org/10.1146/annurev.mi.38.100184.000405
  4. Biochem. Biophys. Res. Commun. v.119 Dudani, A.K.;Srivastava, L.K.;Prasad, R. https://doi.org/10.1016/0006-291X(84)90867-2
  5. Biochem. Biophys. Res. Commun. v.83 Elango, N.;Janaki, S.;Rao, A.R. https://doi.org/10.1016/0006-291X(78)91375-X
  6. J. Gen. Microbiol. v.117 Fraval, H.N.A.;McBrien, D.C.H.
  7. Biochem. Biophys. Res. Commun. v.98 Gillespie, E. https://doi.org/10.1016/0006-291X(81)90862-7
  8. Biochem. J. v.255 Hayes, J.D. https://doi.org/10.1042/bj2550913
  9. Korean J. Microbiol. v.32 Hwang, S.;Chai, Y.G.;Choi, Y.K.
  10. J. Biochem. v.102 Inoue, Y.;Rhee, H.I.;Watanabe, K.;Murata, K.;Kimura, A. https://doi.org/10.1093/oxfordjournals.jbchem.a122091
  11. J. Biol. Chem. v.265 Jacoby, W.B.
  12. Nature v.227 Laemmli, U.K. https://doi.org/10.1038/227680a0
  13. Gene v.1504 Lu, T.;Creighton, D.J.;Antoine, M.;Fenselau, C.;Lovett, P.S.
  14. Biochim. Biophys. Acta v.566 Marmstal, E.;Mannervik, B. https://doi.org/10.1016/0005-2744(79)90040-8
  15. Can. J. Microbiol. v.35 Murata, K.;Inoue, Y.;Rhee, H.I.;Kimura, A. https://doi.org/10.1139/m89-065
  16. Agric. Biol. Chem. v.50 Murata, K.;Saikusa, T.;Watanabe, K.;Fukuda, Y.;Shimosaka, M.;Kimura, A.
  17. J. Biol. Chem. v.258 Penninckx, M.J.;Jaspers, C.J.;Legrain, M.J.
  18. J. Biol. Chem. v.190 Racker, E.
  19. Biochem. J. v.309 Ranganathan, S.;Walsh, E.S.;Tew, K.D. https://doi.org/10.1042/bj3090127
  20. Biochem. Biophys. Res. Commun. v.141 Rhee, H.I.;Murata, K.;Kimura, A. https://doi.org/10.1016/S0006-291X(86)80142-5
  21. Anal. Biochem. v.150 Smith, P.K.;Krohn, R.I.;Hermanson, G.T.;Mallia, A.K.;Gartner, F.H.;Provenzano, M.D.;Fujimoto, E.K.;Goeke, N.M.;Olson, B.J.;Klenk, D.C. https://doi.org/10.1016/0003-2697(85)90442-7
  22. Science v.155 Szent-Gyorgyi, A.;Egyud, L.G.;McLaughlin, J.A. https://doi.org/10.1126/science.155.3762.539
  23. Biochem. J. v.269 Thomalley, P.J. https://doi.org/10.1042/bj2690001
  24. Eur. J. Biochem. v.52 Uotila, L.;Koivusalo, M. https://doi.org/10.1111/j.1432-1033.1975.tb04019.x