SOME RELATIONS BETWEEN FUNCTION SPACES ON R$^n$

  • 발행 : 1995.06.01

초록

Let R$^n$be n-th Euclidean space. Let be the n-th spere embeded as a subspace in R$\^$n+1/ centered at the origin. In this paper, we are going to consider the function space F = {f│f : S$^n$\longrightarrow S$^n$} metrized by as follow D(f,g)=d(f($\chi$), g($\chi$)) where f, g $\in$ F and d is the metric in S$^n$. Finally we want to find certain relation these spaces.(omitted)

키워드