Abstract
Let F be a life distribution with finite mean $\mu$ Then F is said to be in new better then worse than used in expectation (NBWUE(p)) class if $\varphi(u) {\geq} u$ for $0 {\leq}u{\leq}t_0$ and ${\varphi}(u) {\leq} u$ for $t_0< u {\leq} 1$ where ${\varphi}(u)$ is the scaled total-time-on-test transform and $p=F(t_0)$. We propose a testing procedure for $H_0$ : F is exponential against $H_1$ : NBWUE(p), and is not expontial, (or $H_1\;'$ : F is NWBUE (p), and is not exponential) using randomly censored data. Our procedure assumes kmowledge of the proportion p of the population that fail at or before the change-point $\t_0$. Know ledge of $\t_0$ itself is not assumed. The asymptotic normality of the test statistic is established and a Monte Carlo experiment is performed to investigate the speed of convergence of the test statistic to normality. The power of our test is also studied.