Journal of the Korean Mathematical Society (대한수학회지)
- Volume 32 Issue 1
- /
- Pages.93-101
- /
- 1995
- /
- 0304-9914(pISSN)
- /
- 2234-3008(eISSN)
Curvature homogeneity for four-dimensional manifolds
- Sekigawa, Kouei (Department of Mathematics Niigata University) ;
- Suga, Hiroshi (C. Itoh Techno-Science Co. Ltd.) ;
- Vanhecke, Lieven (Department of Mathematics Katholieke University)
- Published : 1995.02.01
Abstract
Let (M,g) be an n-dimensional, connected Riemannian manifold with Levi Civita connection $\nabla$ and Riemannian curvature tensor R defined by $$ R_XY = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]} $$ for all smooth vector fields X, Y. $\nablaR, \cdots, \nabla^kR, \cdots$ denote the successive covariant derivatives and we assume $\nabla^0R = R$.