CURVATURE HOMOGENEITY FOR FOUR-DIMENSIONAL MANIFOLDS

KOUEI SEKIGAWA, HIROSHI SUGA AND LIEVEN VANHECKE

1. Introduction and preliminaries

Let (M,g) be an n-dimensional, connected Riemannian manifold with Levi Civita connection ∇ and Riemannian curvature tensor R defined by

$$R_{XY} = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}$$

for all smooth vector fields X, Y. $\nabla R, \dots, \nabla^k R, \dots$ denote the successive covariant derivatives and we assume $\nabla^0 R = R$.

In [17] I.M. Singer studied infinitesimally homogeneous spaces and introduced the following condition:

 $P(\ell):$ for every $x,y\in M$ there exists a linear isometry $\phi:T_xM\mapsto T_yM$ such that

$$\phi^*((\nabla^k R)_y) = (\nabla^k R)_x \text{ for } k = 0, 1, \dots, \ell.$$

A Riemannian manifold such that P(0) holds is said to be curvature homogeneous and if $P(\ell)$ holds, the manifold is said to be curvature homogeneous up to order ℓ . Further, for any point $x \in M$, let G_s^x be the Lie group

$$G_s^x = \{a \in O(T_x M) | (\nabla_x^i R)a = (\nabla^i R)_x, i = 0, 1, ..., s\}.$$

Its Lie algebra \mathfrak{g}_s^x consists of all skew-symmetric endomorphisms A of T_xM such that $A \cdot (\nabla^i R)_x = 0$ for i = 0, ..., s. Here A acts as a derivation of the tensor algebra. Clearly, there always exists a first

Received October 23, 1993.

¹⁹⁹¹ Mathematics Subject Classification: 53C20, 53C30.

Key words and phrases: Riemannian manifold, homogeneous spaces, curvature homogeneous spaces.

integer k_x such that $\mathfrak{g}_{k_x} = \mathfrak{g}_{k_x+1}$. Moreover, if $P(\ell)$ is satisfied, then \mathfrak{g}_i^x and \mathfrak{g}_i^y are conjugated for $0 \le i \le \ell$. Hence, if $P(k_x+1)$ holds, k_x does not depend on x. In this case we put $\mathfrak{g}_i^x = \mathfrak{g}_i, k_M = k_x$. A Riemannian manifold satisfying the condition $P(k_M+1)$ is said to be infinitesimally homogeneous [17] and Singer's main result in [17] is the following

THEOREM 1. A connected, simply connected, complete, infinitesimally homogeneous Riemannian manifold is a homogeneous Riemannian space.

It is clear that $k_M + 1 \le \frac{1}{2}n(n-1)$ but a better estimate, namely $k_M + 1 < \frac{3}{2}n$, is given in [3, p. 165].

The following useful lemma also follows from [17]

LEMMA 2. If P(r) is satisfied, then there exists a maximal principal subbundle F_r^b of the orthonormal frame bundle $O(M,g) \to M$ on which the components $R_{ijk\ell}$ and $R_{h_s \cdots h_1, ijk\ell}, 1 \leq h_1, \cdots, h_s, i, j, k, \ell \leq n, 1 \leq s \leq r$, are constants and which contains a given frame $b \in O(M,g)$. Moreover, the connected component of the identity of G_r^x , $x \in M$ being arbitrary, is the structure group of F_r^b .

Here we used the notational convection

$$R_{ijk\ell} = g(R_{\epsilon_i e_j} e_k, e_\ell),$$

$$R_{h_* \cdots h_1, ijk\ell} = g((\nabla^s_{h_* \cdots h_1}, R)_{e_i e_i} e_k, e_\ell)$$

where $\{e_i, i = 1, ..., n\}$ is an orthonormal frame.

There is no lack of examples of non-homogeneous curvature homogeneous manifolds (i.e., (M, g) satisfying P(0)). We refer to [6] - [13], [16], [18] - [21] for more details, more references and up-to-date information, in particular for the three- and four-dimensional case.

For dim M=3, Singer's estimate is $k_M+1\leq 3$ but in [14] the first author proved the following sharper result:

THEOREM 3. Let (M,g) be a three-dimensional, connected, simply connected, complete Riemannian manifold which is curvature homogeneous up to order 1. Then (M,g) is homogeneous and moreover, (M,g) is either symmetric or a group space with a left invariant metric.

We also refer to [5] for a short proof of the homogeneity.

When dim M = 4, Singer's estimate gives $k_M + 1 \le 6$ and Gromov's estimate is $k_M + 1 < 6$. Moreover, we proved in [15]:

THEOREM 4. Let (M,g) be a four-dimensional, connected simply connected and complete Riemannian manifold which is curvature homogeneous up to order two. Then (M,g) is homogeneous and moreover, (M,g) is either symmetric or a group space with a left invariant metric.

The second part of this statement is proved in [1], [4].

The main purpose of this note is to prove the following improvement of Theorem 4:

THEOREM 5. Let (M,g) be a four-dimensional, connected, simply connected and complete Riemannian manifold which is curvature homogeneous up to order one. Then (M,g) is homogeneous and moreover, (M,g) is either symmetric or a group space with a left invariant metric.

2. Sketch of the proof of the main result

Because of [1], [4] we have only to prove the homogeneity. So, let $u = (e_1, ..., e_n)$ be a smooth local cross section of O(M, g) and put

$$\nabla_{e_i} e_j = \sum_{k=1}^n \Gamma_{ijk} e_k \qquad , \quad i, j = 1, ..., n.$$

Then the local functions Γ_{ijk} satisfy

$$\Gamma_{ijk} + \Gamma_{ikj} = 0, \qquad i, j, k = 1, ..., n.$$

For dim M = n = 4 and $x \in (M, g)$, we may choose an orthonormal basis $\{e_i, i = 1, ..., 4\}$ of T_xM such that

$$Qe_i = \lambda_i e_i, \quad 1 \le i \le 4,$$

where Q denotes the Ricci endomorphism and when (M, g) satisfies P(0), all the eigenvalues λ_i are constant on M. Then we have to consider the following five cases:

(I) four different Ricci eigenvalues,

- (II) three different Ricci eigenvalues,
- (III) two Ricci eigenvalues with multiplicity two.
- (IV) three equal Ricci eigenvalues,
- (V) four equal Ricci eigenvalues

and without loss of generality, we may suppose:

- (I) $\lambda_1 > \lambda_2 > \lambda_3 > \lambda_4$,
- (II) $\lambda_1 = \lambda_2, \lambda_3 \neq \lambda_4 \neq \lambda_1 \neq \lambda_3$
- (III) $\lambda_1 = \lambda_2 \neq \lambda_3 = \lambda_4$,
- (IV) $\lambda_1 = \lambda_2 = \lambda_3 \neq \lambda_4$,
- (V) $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4$.

We start by considering the cases (I) and (V).

LEMMA A. An (M, g) of type (I) is homogeneous.

Proof. For such an (M, g) we have $\mathfrak{g}_0 = \{0\}$ or equivalently, $k_M = 0$. Then the result follows from Singer's theorem.

LEMMA B. An (M, g) of type (V) is homogeneous.

Proof. In this case (M, g) is a curvature homogeneous Einstein space and hence symmetric as follows from a still unpublished result of A. Derdziński [2].

So we are left with the cases (II), (III) and (IV). More specifically we have to consider the following subcases:

(1)
$$(II)_1 : \mathfrak{g}_0 = \{0\},$$

$$(II)_2 : \mathfrak{g}_0 = \mathfrak{s}o(2) \oplus \{0\} = \mathfrak{g}_1,$$

$$(II)_3 : \mathfrak{g}_0 = \mathfrak{s}o(2) \oplus \{0\}, \mathfrak{g}_1 = \{0\};$$

(2)
$$(III)_{1}: \mathfrak{g}_{0} = \{0\},$$

$$(III)_{2}: \mathfrak{g}_{0} = \mathfrak{s}o(2) \oplus \{0\} = \mathfrak{g}_{1},$$

$$(III)_{3}: \mathfrak{g}_{0} = \mathfrak{s}o(2) \oplus \{0\}, \mathfrak{g}_{1} = \{0\};$$

$$(III)_{4}: \mathfrak{g}_{0} = \mathfrak{s}o(2) \oplus \mathfrak{s}o(2) = \mathfrak{g}_{1},$$

$$(III)_{5}: \mathfrak{g}_{0} = \mathfrak{s}o(2) \oplus \mathfrak{s}o(2), \mathfrak{g}_{1} = \mathfrak{s}o(2) \oplus \{0\},$$

$$(III)_{6}: \mathfrak{g}_{0} = \mathfrak{s}o(2) \oplus \mathfrak{s}o(2), \mathfrak{g}_{1} = \{0\};$$

(3)
$$(IV)_{1}: \mathfrak{g}_{0} = \{0\},$$

$$(IV)_{2}: \mathfrak{g}_{0} = \mathfrak{s}o(2) \oplus \{0\} = \mathfrak{g}_{1},$$

$$(IV)_{3}: \mathfrak{g}_{0} = \mathfrak{s}o(2) \oplus \{0\}, \mathfrak{g}_{1} = \{0\};$$

$$(IV)_{4}: \mathfrak{g}_{0} = \mathfrak{s}o(3) = \mathfrak{g}_{1},$$

$$(IV)_{5}: \mathfrak{g}_{0} = \mathfrak{s}o(3), \mathfrak{g}_{1} = \mathfrak{s}o(2) \oplus \{0\},$$

$$(IV)_{6}: \mathfrak{g}_{0} = \mathfrak{s}o(3), \mathfrak{g}_{1} = \{0\};$$

First we note that the cases $(III)_2, (III)_3$ cannot occur. Further, we have

LEMMA C. The theorem holds for the cases $(II)_1$, $(II)_2$, $(III)_1$, $(III)_4$, $(IV)_1$, $(IV)_2$, $(IV)_4$.

Proof. As is Lemma A the result follows at once from Singer's result.

For the six remaining cases we note that the method of proof is similar to the one used in [15] but the explicit computations are now considerably longer. For that reason we only give a brief sketch of the proofs.

LEMMA D. The theorem holds for the case $(II)_3$.

Proof. The hypothesis implies that we may choose a global orthonormal frame field $u=(e_1,e_2,e_3,e_4)$ such that $Qe_i=\lambda_ie_i, 1\leq i\leq 4$, and such that the functions $R_{abcd}(u), R_{i,abcd}(u), 1\leq i, a\leq 4$, are constant on M. Then it follows by considering the components of the covariant derivative $\nabla \rho$ of the Ricci tensor ρ of type (0,2) that the functions $\Gamma_{i13}, \Gamma_{i14}, \Gamma_{i23}, \Gamma_{i24}, \Gamma_{i34}, 1\leq i\leq 4$, are also constant. Moreover the frame field may be chosen such that, up to sign, the non-zero components of R are given by

(4)
$$\begin{cases} R_{1212} = \alpha, R_{1313} = R_{2323} = \beta, R_{1414} = R_{2424} = \gamma, R_{3434} = \delta, \\ R_{1324} = \epsilon, R_{1423} = -\epsilon, R_{1234} = 2\epsilon. \end{cases}$$

Using (4), the components of ∇R and the Bianchi identities, direct but long computations lead to the consideration of the following cases:

(i)
$$(\Gamma_{123} + \Gamma_{213}, \Gamma_{124} + \Gamma_{214}, \Gamma_{113} - \Gamma_{223}, \Gamma_{114} - \Gamma_{224}) \neq (0, 0, 0, 0);$$

- (ii) $(\Gamma_{123} + \Gamma_{213}, \Gamma_{124} + \Gamma_{214}, \Gamma_{113} \Gamma_{223}, \Gamma_{114} \Gamma_{224}) = (0, 0, 0, 0)$ and $(\Gamma_{134}, \Gamma_{234}) \neq (0, 0)$;
- (iii) $(\Gamma_{123} + \Gamma_{213}, \Gamma_{124} + \Gamma_{214}, \Gamma_{113} \Gamma_{223}, \Gamma_{114} \Gamma_{224}) = (0, 0, 0, 0)$ and $(\Gamma_{134}, \Gamma_{234}) = (0, 0)$ and $9\epsilon^2 - (\alpha - \beta)(\delta - \beta) = 0, 9\epsilon^2 - (\alpha - \gamma)(\delta - \gamma) \neq 0$ (respectively $9\epsilon^2 - (\alpha - \beta)(\delta - \beta) \neq 0, 9\epsilon^2 - (\alpha - \gamma)(\delta - \gamma) = 0$).

In all these cases one derives that (M, g) is a group space.

LEMMA E. The theorem holds for the cases (III)₅ and (III)₆.

Proof. It is already proved in [15] that an (M, g) of type $(III)_5$ is a direct product of two surfaces of different constant curvature. So, in this case, (M, g) is a symmetric space.

Hence, it suffices to consider the case $(III)_6$. Again, the hypothesis implies that we may choose a global orthonormal frame field $u=(e_1,e_2,e_3,e_4)$ such that $Qe_i=\lambda_ie_i, 1\leq i\leq 4$ and such that the functions $R_{abcd}(u), R_{i,abcd}(u), 1\leq i, a\leq 4$, are constant. Then the functions $\Gamma_{i13}, \Gamma_{i23}, \Gamma_{i14}, \Gamma_{i24}, 1\leq i\leq 4$, are constant. Further, the frame field may be chosen such that, up to sign, the non-zero components of R are given by

(5)
$$\begin{cases} R_{1212} = \alpha, R_{3434} = \delta, R_{1313} = R_{2323} = R_{1414} := R_{2424} = \beta, \\ R_{1324} = \epsilon, R_{1423} = -\epsilon, R_{1234} = 2\epsilon. \end{cases}$$

Now, we proceed as in Lemma D and consider first the case $(\alpha - \beta, \epsilon) \neq (0, 0), (\delta - \beta, \epsilon) \neq (0, 0)$. Then we get

$$\Gamma_{123} = \Gamma_{213}, \Gamma_{124} = \Gamma_{214}, \Gamma_{324} = \Gamma_{423}, \Gamma_{213} = \Gamma_{314},$$

and further direct computations lead here to the consideration of the following cases:

- (i) $(\Gamma_{123}, \Gamma_{113}) \neq \pm (\Gamma_{114}, -\Gamma_{124})$ and $(\Gamma_{314}, \Gamma_{313}) \neq \pm (-\Gamma_{323}, \Gamma_{324})$;
- (ii) $(\Gamma_{134}, \Gamma_{313}) = (-\Gamma_{323}, \Gamma_{324})$ respectively $(\Gamma_{323}, -\Gamma_{324})$, and $(\Gamma_{123}, \Gamma_{113}) \neq \pm (\Gamma_{114}, -\Gamma_{124})$;
- (ii)' $(\Gamma_{314}, \Gamma_{313}) \neq \pm (-\Gamma_{323}, \Gamma_{324})$ and $(\Gamma_{123}, \Gamma_{113}) = (-\Gamma_{114}, \Gamma_{124})$ respectively $(\Gamma_{114}, -\Gamma_{124})$;

- (iii) $(\Gamma_{314}, \Gamma_{313}) = (-\Gamma_{323}, \Gamma_{324})$ respectively $(\Gamma_{323}, -\Gamma_{324})$ and $(\Gamma_{123}, \Gamma_{113}) = (-\Gamma_{114}, \Gamma_{124})$ respectively $(\Gamma_{114}, -\Gamma_{142})$ together with $(\Gamma_{313}, \Gamma_{323}) \neq (0, 0)$;
- (iv) the same conditions as in (iii) but now writh $(\Gamma_{313}, \Gamma_{323}) = (0,0)$.

In all these cases we find that (M, g) is a group space or a direct product of two surfaces of different constant curvature.

For the case $(\alpha - \beta, \epsilon) \neq (0, 0), (\delta - \beta, \epsilon) = (0, 0)$ respectively $(\alpha - \beta, \epsilon) = (0, 0), (\delta - \beta, \epsilon) \neq (0, 0)$, we also deduce the same result.

LEMMA F. The theorem holds for the cases $(IV)_3, (IV)_5, (IV)_6$.

Proof. For $(IV)_5$ and $(IV)_6$ the result follows from [15]. In these cases (M,g) is a direct product of a three-dimensional space of non-zero constant curvature and \mathbb{R} , and hence it is a symmetric space.

So, we are left with the case $(IV)_3$. Now we choose again a global orthonormal frame field $u=(e_1,e_2,e_3,e_4)$ on M such that $Qe_i=\lambda_ie_i, 1\leq i\leq 4$, and such that $R_{abcd}(u), R_{i,abcd}(u), 1\leq i,a\leq 4$ are constant. Then it follows that $\Gamma_{i14}, \Gamma_{i24}, \Gamma_{i34}, 1\leq i\leq 4$, are constant functions. This frame field may be specialized further such that, up to sign, the non-vanishing components of R are given by

(6)
$$\begin{cases} R_{1212} = \alpha, R_{1313} = R_{2323} = \beta, R_{3434} = \delta, R_{1414} = R_{2424} = \gamma, \\ R_{1324} = \epsilon, R_{1423} = -\epsilon, R_{1234} = 2\epsilon. \end{cases}$$

First, let $\epsilon \neq 0$. Then also $\Gamma_{i13}, \Gamma_{i23}, 1 \leq i \leq 4$, are constants. Further direct computations then lead to the following cases:

- (i) $(\Gamma_{123} + \Gamma_{213}, \Gamma_{124} + \Gamma_{214}, \Gamma_{113} \Gamma_{223}, \Gamma_{114} \Gamma_{224}) \neq (0, 0, 0, 0)$;
- (ii) $(\Gamma_{123} + \Gamma_{213}, \Gamma_{124} + \Gamma_{214}, \Gamma_{113} \Gamma_{223}, \Gamma_{114} \Gamma_{224}) = (0, 0, 0, 0)$ and $(\Gamma_{134}, \Gamma_{234}) \neq (0, 0)$.

In both cases (M, g) turns out to be a group space.

Next, let $\epsilon = 0$. It follows that $\Gamma_{i13}, \Gamma_{i23}, 1 \leq i \leq 4$, are constants. Here we find that (M, g) is a group space or a direct product of a three-dimensional space of non-zero curvature and \mathbb{R} .

The main result follows nowdirectly from these lemmas.

References

- 1. L. Bérard Bergery, Séminaire A. Besse, Cedic, Paris (1981), 40-60.
- 2. A. Derdziński, preprint.
- 3. A. Gromov, *Partial differential relations*, Ergeb. Math. Grenzgeb. 3. Folge 9, Springer-Verlag, Berlin, Heidelberg, New York, 1987.
- G. Jensen, Homogeneous Einstein spaces in dimension four, J. Differential Geom. 3 (1969), 309-349.
- 5. O. Kowalski, A note to a theorem by K. Sekigawa, Comment. Math. Univ. Carolinae 30 (1989), 85-88.
- 6. O. Kowalski, F. Tricerri and L. Vanhecke, Exemples nouveaux de variétés riemanniennes non homogènes dont le tenseur de courbure est celui d'un espace symétrique riemannien, C.R. Acad. Sci. Paris Sér. I 311 (1990), 355-360.
- O. Kowalski, F. Tricerri and L. Vanhecke, Curvature homogeneous Riemannian manifolds, J. Math. Pures Appl. 71 (1992), 471-501.
- O. Kowalski, F. Tricerri and L. Vanhecke, Curvature homogeneous spaces with a solvable Lie group as homogeneous model, J. Math. Soc. Japan 44 (1992), 461-484.
- 9. O. Kowalski, A classification of Riemannian 3-manifolds with constant principal Ricci curvatures $\rho_1 = \rho_2 \neq \rho_3$, Nagoya Math. J., to appear.
- 10. O. Kowalski, Nonhomogeneous Riemannian 3-manifolds with distinct constant Ricci eigenvalues, Comment. Math. Univ. Carolinae, to appear..
- 11. O. Kowalski and F. Prüfer, On Riemannian 3-manifolds with distinct constant Ricci eigenvalues, preprint.
- 12. O. Kowalski and F. Prüfer, Curvature tensors in dimension four which do not belong to any curvature homogeneous space, preprint.
- 13. K. Sekigawa, On the Riemannian manifolds of the form $B \times_f F$, Ködai Math. Sem. Rep. 26 (1975), 343-347.
- K. Sekigawa, On some 3-dimensional curvature homogeneous spaces, Tensor N.S. 31 (1977), 87-97.
- 15. K. Sekigawa, H. Suga and L. Vanhecke, Four-dimensional curvature homogeneous spaces, Comment. Math. Univ. Carolinae 33 (1992), 261-268.
- 16. A. Spiro and F. Tricerri, 3-dimensional Riemannian metrics with prescribed Ricci principal curvatures, preprint.
- I. M. Singer, Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960), 685-697.
- H. Takagi, On curvature homogeneity of Riemannian manifolds, Tôhoku Math. J. 26 (1974), 581-585.
- F. Tricerri and L. Vanhecke, Curvature homogeneous Riemannian manifolds, Ann. Sci. Ecole Norm. Sup. 22 (1989), 535-554.
- T. Tsukada, Curvature homogeneous hypersurfaces immersed in a real space form, Tôhoku Math. J. 40 (1988), 221-244.
- K. Yamato, A characterization of locally homogeneous Riemannian manifolds of dimension three, Nagoya Math. J. 123 (1991), 77-90.

Department of Mathematics Niigata University Niigata 950-21, Japan

C. Itoh Techno-Science Co. Ltd. Komazawa 1-16-7, Setagaya 154 Tokyo, Japan

Department of Mathematics Katholieke Universiteit Leuven Celestijnenlaan 200B 3001 Leuven, Belgium