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CURVATURE HOMOGENEITY FOR
FOUR-DIMENSIONAL MANIFOLDS

KOUEI SEKIGAWA, HIROSHI SUGA AND LIEVEN VANHECKE

1. Introduction and preliminaries

Let (M,g) be an n-dimensional, connected Riemannian manifold
with Levi Civita connection V and Riemannian curvature tensor R
defined by

Rxy = [Vx,Vy] = Vix v

for all smooth vector fields X,Y. VR,--- ,V*¥FE, .- denote the succes-
sive covariant derivatives and we assume V'R = R.

In [17] .M. Singer studied infinitesimally homogeneous spaces and
introduced the following condition :

P(£) : for every z,y € M there exists a linear isometry ¢ : T, M —
T, M such that

¢*((VER),) = (V*R), for k=0,1,--- ¢

A Riemannian manifold such that P(0) holds is said to be curvature
homogeneous and if P(£) holds, the manifold is said to be curvature
homogeneous up to order £. Further, for any point z € M, let GZ be
the Lie group

G; ={a € O(T,M)|(VLiR)a = (V'R),.i = 0,1,...,s}.

Its Lie algebra g?¥ consists of all skew-symmetric endomorphisms A
of T M such that A-(V'R), = 0for¢ = 0,..,s. Here A acts as a
derivation of the tensor algebra. Clearly, there always exists a first
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integer k; such that g, = gr,4+1. Moreover, if P(¢) is satisfied, then
g7 and g! are conjugated for 0 < i < ¢. Hence, if P(k; + 1) holds,
k; does not depend on z. In this case we put of = gi,ky = ke, A
Riemannian manifold satisfying the condition P(kas 4 1) is said to be
infinitesimally homogeneous [17] and Singer’s main result in [17] is the
following

THEOREM 1. A connected, simply connected, complete, infinitesi-
mally homogeneous Riemannian manifold is a homogeneous Riemann-
ian space.

It is clear that kpr +1 < -;-n(n — 1) but a better estimate, namely
km +1 < $n, is given in [3, p. 165).
The following useful lemma also follows from [17]

LEMMA 2. If P(r) is satisfied, then there exists a maximal principal
subbundle F! of the orthonormal frame bundle O(M,g) — M on which
the components Rijre and R, ..ny ijie, 1 < hay-oo  hat, 5, k0 <n,1 <
s < r, are constants and which contains a given frame b € O(M, g).
Moreover, the connected component of the identity of GZ, 2 € M being
arbitrary, is the structure group of F?.

Here we used the notational convection
Rijxe = g(Re,c, €k, e¢),

Rha.,.hl,ijk(’ = g((vzs,..th)e.»ej €k, €e)

where {e;,i = 1,...,n} is an orthonormal frame.

There is no lack of examples of non-homogeneous curvature homo-
geneous manifolds (i.e., (M, g) satisfying P(0)). We refer to [6] - [13],
[16], [18] - [21] for more details, more references and up-to-date infor-
mation, in particular for the three- and four-dimensional case.

For dim M = 3, Singer’s estimate is ks +1 < 3 but in [14] the first
author proved the following sharper result :

THEOREM 3. Let (M, g) be a three-dimensional, connected, simply
connected, complete Riemannian manifold which is curvature homoge-
neous up to order 1. Then (M, g) is homogeneous and moreover, (M, g)
is either symmetric or a group space with a left invariant metric.

We also refer to [5] for a short proof of the homogeneity.
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When dim M = 4, Singer’s estimate gives kas +1 < 6 and Gromov’s
estimate is kar + 1 < 6. Moreover, we proved in [15] :

THEOREM 4. Let (M, g) be a four-dimensional, connected simply
connected and complete Riemannian manifold which is curvature ho-
mogeneous up to order two. Then (M,g) is homogeneous and more-
over, (M, g) is either symmetric or a group space with a left invariant
metric.

The second part of this statement is proved in [1], [4].
The main purpose of this note is to prove the following improvement
of Theorem 4:

THEOREM 5. Let (M,g) be a four-dimensional, connected, simply
connected and complete Riemannian manifold which is curvature ho-
mogeneous up to order one. Then (M, g) is homogeneous and moreover,
(M, g) is either symmetric or a group space with a left invariant metric.

2. Sketch of the proof of the main result

Because of (1], [4] we have only to prove the homogeneity. So, let

u = (e1,..., €,) be a smooth local cross section of O(M, g) and put
n
Ve..e,- ZZP,']‘kek ) i,j :1,...,n.
k=1

Then the local functions T';;x satisfy
Lijk +Tir; =0, i5,k=1,..,n.

For dim M =n =4 and = € (M, g), we may choose an orthonormal

basis {e;,t = 1,...,4} of T, M such that
Qei = Aies, 1 <1< 4,

where @@ denotes the Ricci endomorphism and when (M, g) satisfies
P(0), all the eigenvalues ); are constant on M. Then we have to
consider the following five cases :

(I) four different Ricci eigenvalues ,
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(II) three different Ricci eigenvalues |

(III) two Ricci eigenvalues with multiplicity two .
(IV) three equal Ricci eigenvalues
(V) four equal Ricci eigenvalues

)

and without loss of generality, we may suppose :
(I) /\1 > /\2 > /\3 > )\4,
(I) Ay = X2, A3 # M # )\ # Az,
(III) Ay = A2 # A3 = Ay,
(IV) A1 = X2 = A3 # A4,
(V) A1 = o = A3 = A4
We start by considering the cases (I) and (V).
LEMMA A. An (M, g) of type (I) is homogeneous.

Proof. For such an (M, g) we have go = {0} or equivalently, ks = 0.
Then the result follows from Singer’s theorem.

LEMMA B. An (M, g) of type (V) is homogeneous.

Proof. In this case (M, g) is a curvature homogenecus Einstein space
and hence symmetric as follows from a still unpublished result of A.

Derdzinski [2].
So we are left with the cases (II), (III) and (IV). More specifically

we have to consider the following subcases :

(1) (I1): : go = {0},
(I1)2 : go = 50(2) & {0} = gy,
(IT)s : go = 50(2) & {0}, = {0};

(2) (I1I): : go = {0},
(I1I); : go =s0(2) @ {0} = g1,
(I11)3 : go = 50(2) @ {0}, 01 = {0};
(IIT)4 : go = 50(2) @ 50(2) = gy,
(I1I)5 : go = 50(2) Dso(2) , g1 =50(2) & {0},
(I1I) : go = 50(2) B 50(2) , g1 = {0};
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(3) (V)1 : go = {0},
(IV)2 : go = 50(2) @ {0} = gy,
(IV)s : go = 50(2) @ {0}, @1 := {0};
(IV)s : go = 50(3) = g1,
(IV)s : o = 50(3), a1 = s0(2) B {0},
(IV)s : go = 50(3), g1 = {0}

First we note that the cases (III)z,(III); cannot occur. Further,
we have

LEMMA C. The theorem holds for the cases (II)y, (ID),, (IID),
(II11)4, (IV)1,(IV)o, (IV ).

Proof. Asis Lemma A the result follows at once from Singer’s result.

For the six remaining cases we note that the method of proof is
similar to the one used in [15] but the explicit computations are now
considerably longer. For that reason we only give a brief sketch of the
proofs.

LEMMA D. The theorem holds for the case (I1),.

Proof. The hypothesis implies that we may choose a global or-
thonormal frame field u = (e1,€e2,€3,€e4) such that Qe; = Aiei, 1 <
¢ < 4, and such that the functions Rapea(u), Rigpea(u),1 < i,a < 4,
are constant on M. Then it follows by considering the components of
the covariant derivative Vp of the Ricci tensor p of type (0,2) that the
functions I3, [i14,Ti23, Tioa, Tiay, 1 < i < 4, are also constant. More-
over the frame field may be chosen such that, up to sign, the non-zero
components of R are given by

(4) { R1212 =, R13]3 = R23‘23 = ﬂ, Rl414 = R2424 =7, R3434 = 6,~

Rygpq = €, Ria23 = —€, R34 = 2e.

Using (4), the components of VR and the Bianchi identities, direct but
long computations lead to the consideration of the following cases :

(1) (Ti23+T213,T124 + T214,Ti1s — 223,114 —T'224) # (0,0,0,0);
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(i1) (Ti23 +T213,T124 + T214,T113 — T223,T114 — T224) = (0,0,0,0)
and (F134, I1234) ?é (0,0);

(ii1) (Ti23 +T213, 124 + T214, 0103 — 223, T114 — T224) = (0,0,0,0)
and (F134,P234) = (0,0) and 962 - (Cl/ - ﬂ)(é - ﬂ) = 0, 962 —
(¢ —7)(6—7) # 0 (respectively 9eZ — (a — B)(6 — B) # 0,9¢* —
(a—7)(6—7)=0).

In all these cases one derives that (M, g) is a group space.

LEMMA E. The theorem holds for the cases (III); and (11I)g.
Proof. 1t is already proved in [15] that an (M, g) of type (I11)s is

a direct product of two surfaces of different constant curvature. So, in
this case, (M, ¢) is a symmetric space.

Hence, it suffices to consider the case (I1[)s. Again, the hypothe-
sis implies that we may choose a global orthonormal frame field u =
(e1,€z2,€3,€4) such that Qe; = Aje;, 1 <7 < 4 and such that the func-
tions Rapca(u), Riabea(u),1 < i,a < 4, are constant. Then the func-
tions 13,23, T4, Tioq, 1 < ¢ < 4, are constant. Further, the frame
field may be chosen such that, up to sign, the non-zero components of
R are given by

(5) Ri212 = a, R334 = 6, Ri313 = Razes = Ris1a = Rosoa = 3,
Ri324 = €, R1423 = —€, R1234 = 2e.

Now, we proceed as in Lemma D and consider first the case (a —

3,€) # (0,0),(6 — B,¢) # (0,0). Then we get

[i23 = 213, T124 = D214, U324 = Ta23, T213 == I's1a,
and further direct computations lead here to the consideration of the
following cases :

(1) (Ti23,T113) # £(T114, —T124) and (T'z14,T13)
# +(—T323,'324);
(11) (F134,F313) == (—F323,F324) respectively (1“;;23,—I‘324), and
(Ty23,Th13) # £(T114, —Ti24);
(i1)" (Ts14,T313) # £(—T323,324) and (I'123,T113) = (=T114,T124)
respectively (114, —I124);
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(lll) (P314, F313) = (——F323, F324) respectively (P323, ——P324) and
(F123, P113) = (——P114, F]g.;) respectively (P]M, '—F142) together
with (F313, F323) ?7£ (0,0);

(iv) the same conditions as in (iii) but now writh (T313,T323) =
(0,0).

In all these cases we find that (M, g) is a group space or a direct product
of two surfaces of different constant curvature.

For the case (o — f,¢) # (0,0),(6 — 8,¢) = (0, 0) respectively (o —
B,€) = (0,0),(6 — B,¢€) # (0,0), we also deduce the same result.

LEMMA F. The theorem holds for the cases (IV )3, (IV)s,(IV )s.

Proof. For (IV)s and (IV)s the result follows from [15]. In these
cases (M, g) is a direct product of a three-dimensional space of non-zero
constant curvature and R, and hence it is a symmetric space.

So, we are left with the case (IV);. Now we choose again a global
orthonormal frame field u = (e1,e2,e3,e4) on M such that Qe; =
Aie;,1 < ¢ < 4, and such that Rapea(u), Rigpea(u),1 < i,a < 4 are
constant. Then it follows that I'i14, joq, Tizg, 1 < ¢ < 4, are constant
functions. This frame field may be specialized further such that, up to
sign, the non-vanishing components of R are given by

() Riz12 = o, Riz13 = Ry323 = B, R3a34 = 6, Ryg1s = Raans = 7,
Ri324 = €, Rys23 = —€, R334 = 2e.

First, let € # 0. Then also Ii13,Ti23,1 < ¢ < 4, are constants.
Further direct computations then lead to the following cases :

(i) (T'123+T213,T124 +T214,T113 — D23, Ti14 — T'224) # (0,0,0,0);
(i) (T123 + 213, T124 4 P21, T11s — Ta23, U1 4 — Ta4) = (0,0, 0,0)
and (T'134,T234) # (0,0).

In both cases (M, g) turns out to be a group space.

Next, let € = 0. It follows that I'jy3,[igs,1 < i < 4, are constants.
Here we find that (M,g) is a group space or a direct product of a
three-dimensional space of non-zero curvature and R.

The main result follows nowdirectly from these lemmas.
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